1	SERINC2-mediated serine metabolism promotes cervical cancer progression and drives T cell		
2	exhaustion		
3			
4	Yixuan Sun1*, Yang Zhou1*, Qihua Peng1*, Wanzhen Zhou1*, Xiao Li1, Ruiwen Wang1, Yifan Yin3,		
5	Huixian Huang1, Hongfei Yao4, Qing Li2, Xueli Zhang2, Lipeng Hu2, Shuheng Jiang2, Zhigang Zhang2,		
6	Dongxue Li2 [#] , Xiaolu Zhu1 [#] , Yincheng Teng1 [#]		
7			
8	1. Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai		
9	Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China.		
10	2. State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital,		
11	School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.		
12	3. Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong		
13	University, Shanghai, 200127, P.R. China.		
14	4. Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to		
15	Fudan University, Shanghai, 200040, PR China.		
16			
17	#Corresponding authors: Yincheng Teng, Shanghai e-mail address: teng_yc@126.com		
18	ORCID:0000-0002-6451-4479		
19	Xiaolu Zhu, Shanghai e-mail address: zhuxl_ong@163.com		
20	Dongxue Li, Shanghai e-mail address: dxli@shsci.org		
21	*Yixuan Sun, Yang Zhou, Qihua Peng and Wanzhen Zhou contributed equally to this research		
22			

32 Supplementary Fig.1 Expression profile and prognosis analysis of SERINC family genes. (A) 33 Expression of *SERINC1*, *SERINC3*, *SERINC4* and *SERINC5* using TCGA and GTEx database. (B) 34 Kaplan-Meier analysis of OS in patients with high or low *SERINC5* expression using GEPIA online 35 server. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001

83	Supplementary Fig.3 SERINC2 cell line expression, knockdown/overexpressed efficiency and
84	functional assay. (A) SERINC2 expression in HeLa, C-4I, C-33A, SiHa and ME-180 cells at mRNA and
85	protein level. (B) Validation of SERINC2 knockdown efficiency at mRNA and protein level in HeLa and
86	C-4I cells. (C) Validation of SERINC2 overexpression efficiency at mRNA and protein level in HeLa
87	and C-4I cells. (D) Validation and statistical analysis of knockdown efficiency at mRNA and protein
88	expression level of shNC/shSERINC2 HeLa cells. (E) Apoptosis assay staining the effect of
89	siNC/siSERINC2 HeLa and C-4I cells with analysis. (F) Representative EdU staining of SERINC2
90	knockdown HeLa and C-4I cells in separate channel. Scale bar = 50μ m. (G) Representative JC-1 staining
91	images of SERINC2 knockdown HeLa and C-4I cells in separate channel. Scale bar = $50 \mu m.*P < 0.05$,
92	**P < 0.01, ***P < 0.001
93	
94	
95	
96	
97	
98	
99	
100	
101	
102	
103	

125 Supprementary Fig.4 SERENC2 dual t involve in SOOC inclusions. (A) if stating of SERENC2 121 expression and localization in HeLa and C-4I cells. DiI: lipophilic carbocyanine fluorescent dye used to 122 target cell membrane. scale bar: 50 μm. (B) Western blotting using protein extracts from cytoplasm and 123 membrane to determine SERINC2 expression in SiHa, C-33A and ME-180 cells. (C) Western blotting 124 was applied to detect change in the AKT-mTOR pathway after SERINC2 knockdown. Puromycin 125 infiltration assay was used to detect the synthesis of nascent protein after SERINC2 knockdown. (D)

126	mRNA protein level expression of ATF in SERINC2 knockdown HeLa, C-4I cells under normal complete
127	medium conditions and serine/glycine deprived cultured HeLa and C-4I cells. The serine withdrawal
128	time was 24h. (E) Relative quantification of serine derived SGOC metabolites after knockdown of
129	SERINC2 using LC-MS. (F) mRNA level of SGOC metabolism enzyme after SERINC2 knockdown.
130	(G) Intracellular ATP levels of SERINC2-knockdown HeLa and C-4I cells by ATP assay kit. (H)
131	Determination of intracellular ATP and GTP level using LC-MS after SERINC downregulation in HeLa
132	cells. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	

Supplementary Fig.5 Pathway enrichment analysis of SERINC2-knockdown HeLa cells. (A) GSEA
analysis revealed several critical pathways that enriched in siSERINC2 HeLa cells compared to siNC
HeLa cells. (B-D) GSEA analysis and gene expression profiles in siSERINC2 HeLa cells versus siNC

HeLa cells

analysis and gene expression profiles in siSERINC2 HeLa cells versus siNC HeLa cells.

	Forward Primer (5'-3')	Reverse Primer (5'-3')
ATF4	TCCAACAACAGCAAGGAGGA	TACCCAACAGGGCATCCAAG
PHGDH	CTGCGGAAAGTGCTCATCAGT	TGGCAGAGCGAACAATAAGGC
PSAT1	TGCCGCACTCAGTGTTGTTAG	GCAATTCCCGCACAAGATTCT
PSPH	GAGGACGCGGTGTCAGAAAT	GGTTGCTCTGCTATGAGTCTCT
SHMT1	CTGGCACAACCCCTCAAAGA	AGGCAATCAGCTCCAATCCAA
MTHFD1	AGGATGTGGATGGATTGACTAGC	CCCTTAGGCGTACAAGGAATG
MTHFR	CCGCCGTGAACTACTGTGG	AGATGGCCCGTGATCTCCTC
SHMT2	CATCGTCACCACCACTACTCACAAG	CAGGGATGGGAACACGGCAAAG
MTHFD2	GATCCTGGTTGGCGAGAATCC	TCTGGAAGAGGCAACTGAACA
MTHFD1L	GGCTCTGTATAATCGGCTGGTTCC	CTCTTCTGTCAGTGTGCTCGGATC
MTHFD2L	CAGTTACCACTACCAGACCACG	GGCAGGTATGAGAGAATGCTGA
DHFR	GAGAACTCAAGGAACCTCCACAAGG	CAGAACTGCCACCAACTATCCAGAC
TYMS	GGAGTGAAAATCTGGGATGCC	ACTGGAAGCCATAAACTGGGC

213 Supplementary Table 2 Antibody used in this study.

	Catalogue Number	Company
Anti-mTOR	2972S	Cell Signaling Technology
Anti-p-mTOR(S2481)	2974T	Cell Signaling Technology
Anti-AKT	92728	Cell Signaling Technology

Anti-p-AKT(S473)	9271T	Cell Signaling Technology
Anti-Puromycin	MABE343	Merck
Anti-ATF4	10835-1-AP	Proteintech
Anti-Na,K-ATPase	GB11400-100	Servicebio

- 216 Cell membrane and cytosol protein extraction assay
- 217 Cell membrane and cytosol protein extraction was performed using Membrane and Cytosol Protein Extraction Kit (Beyotime, China, Cat#P0033) according to manufacturer's guideline. Briefly, a total of 218 219 1x10⁷ cells were harvested and resuspended in reagent A containing phenylmethanesulfonyl fluoride 220 (PMSF, Beyotime, China, Cat#ST506). The samples were subjected to 2 cycles of freeze and thaw by 221 liquid nitrogen, followed by centrifugation at 700 g for 10 mins in 4 °C. The supernatant was then 222 centrifuged at 14000 g for 30 mins and the precipitation was resuspended in reagent B. After ice-bath for 223 40 mins, samples were centrifuged at 14000 g for 5 mins and the supernatant was maintained at -80°C 224 or prepared for immunoblotting sample loading.