1	A Novel Mouse Model of Depression: Advantages in Immune
2	Research and Clinical Translation
3	Supplementary Materials
4	
5	1. Supplemental Methods
6	2. Supplemental Figures
7	Fig. S1 The effect of different durations of CSDS on body injury in mice.
8	Fig. S2 Effects of the CSDS (3 min/day, 10 days) on anxiety-like, depressive-like, and
9	cognitive behaviors in mice.
10	Fig. S3 Comparison of behavioral tests between CSDS (10 min/day, 10days) and
11	PWSDS group mice.
12	Fig. S4 The gating strategy for microglia identification.
13	Fig. S5 Effects of PWSDS on microglial proliferation/activation in the mPFC, NAc,
14	Amy, HT, and vHP.
15	Fig. S6 The effect of PWSDS-induced stress on the expression of the NF- κ B/NLRP3
16	signaling pathway in the dHP.
17	Fig. S7 The effects of fluoxetine treatment on microglial proliferation/activation in the
18	Amy of PWSDS-exposed mice.
19	3. Supplemental Tables
20	Table S1 Statistics of all results in this study are provided.
21	Table S2 The behavioral alterations of PWSDS-exposed mice in three repeated
22	modeling experiments.
	1

- **Table S3** Demographic and clinical characteristics of all subjects.
- **Table S4** Primer sequences for qRT-PCR experiments.

26 1. Supplemental Methods

27 Social avoidance (SA) test

28 The SA test evaluates the social interaction behavior of rodents following exposure to 29 stress. The experiment was conducted in a gray polyvinyl chloride chamber measuring 30 50 cm \times 50 cm \times 50 cm, illuminated at 10 lux. A wire-mesh cylinder was placed 31 on one side of the chamber, with a neighboring area of 20 cm \times 25 cm designated as 32 the "interaction zone." Mice were placed into the empty compartment and allowed to 33 explore freely for 2.5 minutes. Following this, a novel CD1 mouse was placed inside 34 the mesh cylinder, and the test mouse was allowed to explore freely for another 2.5 35 minutes. The interaction ratio was calculated as the time spent in the interaction zone 36 with the target present divided by the time spent in the interaction zone without the 37 target.

38 Open field (OF) Test

The OF test is commonly used to evaluate anxiety-like behavior in animals. Mice were placed in a square box (50×50×50 cm³) constructed of gray polyvinyl chloride for free exploration, with a testing period of 10 minutes and a light intensity of 60 lux. The ANY-Maze 4.98 tracking system was utilized to record the total distance traveled, the latency to enter the central area and the time spent in the area.

44 Elevated plus maze (EPM) test

The EPM test assesses animal's ability to explore novel environments and their anxietylike behaviors induced by their natural aversion to open and elevated areas. The device was placed 50 cm away from the operating platform, with a light intensity of 60 lux. At the beginning of the test, the mouse was placed in the central area, with its head facing the closed arm, and allowed to freely explore for 5 minutes. The residence time of the 50 animals in the open arms was recorded and analyzed.

51 Light-dark box (LDB) test

The LDB test is based on the innate aversion of mice to illuminated spaces and curiosity about novel environments and commonly used to assess anxiety-like behavior. During the test, the mice were placed in a dark box (10 lux) facing an illuminated box (650 lux). The number of times the mice entered the illuminated box and the amount of time they spent in the illuminated box within 5 minutes were recorded and analyzed.

57 Forced swimming test (FST)

Prior to the initiation of the experiment, the mice were allowed to acclimate to the laboratory environment for at least 1 hour. Subsequently, a transparent cylindrical water tank was prepared, with the water temperature maintained at approximately 24 °C and a depth of 18-20 cm. The mice were then individually placed in the water tank for 6 minutes, and the immobility time of the mice in the tank was recorded using a camera.

63 Tail suspension test (TST)

Prior to the initiation of the experiment, the mice were allowed to acclimate to the laboratory environment for at least 1 hour. Subsequently, an individual compartment ($15 \text{ cm} \times 17 \text{ cm} \times 50 \text{ cm}$) equipped with a suspension rack was prepared. The mouse tail was affixed with adhesive tape, after which it was suspended upside down from a hook, and the mouse's head was positioned approximately 25 cm above the ground. The mice were suspended for 6 minutes, and the entire process was recorded using a camera to track the immobility time of the mice during the final 4 minutes of the experiment.

71 Sucrose Preference Test (SPT)

72 The SPT is commonly used to assess anhedonia associated with depressive-like 73 symptoms in animals. During the adaptation process, the mice were given two bottles 74 of pure water in their respective cages for 48 hours and then given two bottles of a 1% 75 sucrose solution for another 24 hours. After the drinking water and sucrose solutions 76 were removed for 24 h, the bottles containing 1% sucrose water and pure water were 77 placed in the cages again for 24 h of testing. The two bottles were weighed before and 78 after the test to determine the sucrose preference of the experimental animals: sucrose preference (%) = sucrose water consumption/(sucrose + pure water consumption) * 100. 79

80 Novel object recognition (NOR) test

81 The NOR test evaluates the cognitive and memory abilities of animals based on their 82 natural tendency to explore novel things. The testing is divided into two stages: 83 familiarity and discrimination. During the familiarization stage, two identical objects (A) are placed in the device. The mouse was placed in the device to explore the object 84 85 for 10 minutes. After 60 minutes, one of the familiar objects was replaced with a novel 86 object (B), and the novel object was placed in the device. Similarly, the mouse was 87 placed in the device to explore the two objects for 10 minutes. The total time for each 88 animal to explore novel and familiar objects was recorded.

89 Spatial object recognition (SOR) test

The SOR test is commonly used to assess the ability of mice to recognize the spatial locations of objects. The environment contains two types of objects: Object A (object in the original location) and Object B (object in a new location). The mice typically spent more time exploring Object B. The test consisted of a learning phase and a 94 discrimination phase, each lasting 10 minutes with a 60-minute interval. In the learning
95 phase, two identical Object A items were placed in predetermined locations within the
96 behavioral arena. In the discrimination phase, one of the Object A items was relocated
97 and labeled Object B. Manual analysis was conducted to determine the time spent by
98 mice exploring Objects A (familiar) and B (displaced) during the discrimination phase.
99 Animals that spent less than 10 seconds exploring objects during this phase were
100 excluded from the analysis.

101 Y-maze spontaneous alternation activity test

102 Y-maze spontaneous alternation activity was used to evaluate the spatial working 103 memory ability of the mice. The device included three gray polyvinyl chloride arms (30 104 $\times 10 \times 15$ cm³). During the test, the animals were placed in the central area of the maze, 105 and the mice freely explored the device for 8 minutes. The sequence of mice entering 106 the three arms within 8 min was recorded, and the percentage of spontaneous alterations 107 and the total number of entries into the arms were determined.

108 Immunofluorescence

109 After anesthesia with isoflurane, the mice were sequentially perfused with 110 physiological saline and 4% paraformaldehyde. The whole brain was extracted and 111 fixed in 4% paraformaldehyde for 8 hours, dehydrated in 30% sucrose solution for 3 112 days and stored frozen at -80 °C. Brain samples were coronally sliced at a thickness of 113 30 μm. For immunofluorescence staining, brain sections were blocked in 1% donkey 114 serum for 1 hour and then incubated overnight at 4 °C with an Iba1 antibody (1:1000, 115 Wako 019-19741, Tokyo, Japan) diluted 1:1000 in 1% donkey serum. On the following day, the sections were incubated at room temperature for 2 hours in a donkey anti-rabbit
antibody conjugated with Alexa Fluor 488 (1:500, Invitrogen, Carlsbad, USA). Then,
the sections were covered with Vectashield containing DAPI (Vector Laboratories,
Burlingame, USA). Images were captured using an Olympus VS200 whole-slide
scanning microscope.

121 Quantitative real-time PCR (qRT–PCR)

122 The experimental mice were euthanized following anesthesia induction with isoflurane. Tissue was harvested from dHP of the mice for qRT-PCR. RNA was extracted from the 123 124 peripheral blood serum of the mice using a BIOG cfRNA Easy Kit (51027, BIOG, 125 Changzhou Biogenerating Biotechnology Corp., Changzhou, China). Total RNA was isolated from the dHP tissue utilizing a total RNA extraction kit (R1200, Beijing 126 127 Solarbio Science & Technology Co., Ltd.). Beijing, China). Subsequently, cDNA synthesis was conducted using the Evo M-MLV RT Mix Kit with gDNA Clean 128 (AG11728, Accurate Biotechnology Co., Ltd.). Changsha, China). qRT-PCR was 129 130 performed using the LightCycler® 96 Real-Time PCR System (Roche, Switzerland) 131 and Hieff® qPCR SYBR® Green Master Mix (11201ES08, Yeasen, Shanghai, China). 132 The primer sequences used are listed in Table S4.

133 Enzyme-linked immunosorbent assay (ELISA)

After the mice were anesthetized and decapitated, blood was collected into EP tubes. The tubes were left at room temperature for at least 1 hour and then centrifuged at 3000 rpm for 15 minutes to obtain the supernatant, which constituted the serum. The serum was then stored at -80 °C. Following the manufacturer's instructions, the serum concentrations of IL-6 (EK206HS-AW1, Multiscience, Hangzhou, China), IL-1β
(EK201BHS-AW1, Multiscience, Hangzhou, China), TNF-α (E-HSEL-M0009,
Elabscience, Wuhan, China), CRP (EK294/2-AW1, Multiscience, Hangzhou, China),
and corticosterone (ab108821, Abcam, Cambridge, UK) were quantified using
sandwich ELISA technology.

143 Western Blotting (WB)

144 The mice were euthanized under anesthesia, and their brains were promptly dissected to isolate the dHP. Proteins were extracted using radioimmunoprecipitation assay buffer, 145 146 and their concentrations were measured using a bicinchoninic acid assay. After protein denaturation, electrophoretic separation was performed using 12% - 20% sodium 147 148 dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by protein 149 transfer onto polyvinylidene fluoride membranes. The membranes were blocked with 5% skim milk for 2 hours and then incubated overnight at 4°C with primary antibodies. 150 151 The antibodies used included anti-NLRP3 (1:1000, Cell Signaling Technology, #15101), 152 anti-phospho-NF-kB (1:1000, Cell Signaling Technology, #3031), anti-NF-kB (1:1000, 153 Cell Signaling Technology, #8242), and anti-β-actin (1:1000, Solarbio, K200058M). Afterward, the membranes were treated with horseradish peroxidase-conjugated 154 155 secondary antibodies (1:5000, Solarbio, China) at room temperature for 2 hours. Protein 156 bands were visualized using an enhanced chemiluminescence detection system and 157 quantified using ImageJ software.

158 Flow Cytometry

159 Mice were euthanized by decapitation following anesthesia, and dHP tissues were

160 extracted. The tissues were then placed in DMEM containing 10% fetal bovine serum 161 (FBS) and mechanically homogenized to prepare single-cell suspensions. Glial cells 162 were isolated from the cell suspension using Percoll gradient separation. The isolated glial cells were fluorescently labeled with Alexa Fluor® 488-conjugated anti-163 mouse/human CD11b (101219, Biolegend, California, USA), APC/FireTM 750-164 165 conjugated anti-mouse CD45 (103153, Biolegend, California, USA), PE/Cyanine7-166 conjugated anti-mouse CD86 (105013, Biolegend, California, USA), and Brilliant Violet 421TM-conjugated anti-mouse CD206 (MMR) (141717, Biolegend, California, 167 168 USA) antibodies and incubated in the dark at 4 °C for 45 minutes. After the cells were 169 centrifuged following washing with PBS, they were resuspended in 500 µl of PBS and 170 detected using a SymphonyS6 flow cytometer (BD Biosciences, New Jersey, USA). 171 Single cells were first selected by excluding debris and doublets using FSC-A, FSC-H, and SSC-A plots. Microglia were identified as CD11b⁺ and CD45^{int} population. Within 172 173 the gated microglia population, M1-type microglia were detected using the CD86, while M2-type microglia were labeled using CD206. This standardized gating strategy 174 175 was applied uniformly to all samples to maintain the accuracy and reliability of the results. Data analysis was performed using FlowJo V10 software. 176

177 RNA sequencing

The dHP tissues of the control mice (n = 5) and PWSDS mice (n = 5) were extracted immediately after anesthesia and preserved in liquid nitrogen. RNA extraction, library preparation, and sequencing were performed by Novogene Bioinformatics Institute (Beijing, China). The sequencing principles and procedures are described

182	elsewhere(Zhang et al., 2017). In brief, tissue RNA was extracted using the TRIzol
183	method, cDNA libraries were constructed, and the prepared libraries were sequenced
184	on the Illumina NovaSeq 6000 platform. Bioinformatics analysis of the results was
185	conducted on the Novogene Cloud Platform (https://magic.novogene.com/).
186	
187	

188 **References**

- 189 Zhang, S., Zhu, D., Li, H., Zhang, H., Feng, C., Zhang, W., 2017. Analyses of mRNA
- 190 Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to
- 191 Ginsenoside Rg1 and Rb1 Treatment. Front Pharmacol 8, 88.

192

197 Fig. S1 The effect of different durations of CSDS on body injury in mice. (A)

Experimental timeline for modeling. (B) The physical injury status of mice in the CT
group, CSDS-3 min group, CSDS-6 min group and CSDS-9 min group, with 8 mice
per group. The yellow dashed circles indicate the locations of open wounds, while the
red crosses represent dead mice.

Fig. S2 Effects of the CSDS (3 min/day, 10 days) on anxiety-like, depressive-like, and cognitive behaviors in mice. (A) Experimental timeline for modeling and behavioral testing. (B) Changes in body weight during the modeling period. (C) Interaction ratio in the social avoidance test. (D) Time spent in the center zone and

208	latency to the center zone in the OF test. (E) In the LDB test, the time and latency spent
209	in the light box. (F) Time spent in the open arms during the EPM test. (G) Spontaneous
210	alternation rate in the Y-maze test. (H, I) Total exploration time for the two objects and
211	the novel object ratio during the NOR and SOR test. (J) Sucrose preference ratio and
212	total water intake during the SPT. (K, L) Immobility time during the TST and FST. The
213	data are shown as the means \pm SEM; n = 8; * indicates significant differences as follows:
214	* $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$.

Fig. S3 Comparison of behavioral tests between CSDS (10 min/day, 10days) and 217 218 **PWSDS group mice.** (A) Experimental timeline for modeling and behavioral testing. 219 (B) Changes in body weight during the modeling period. (C) Interaction ratio in the 220 social avoidance test. (D) The time and distance spent in the center zone in the OF test. 221 (E) Time spent in the light box in the LDB test. (F) Sucrose preference ratio and total 222 water intake during the SPT. (G) Immobility time during the FST. (H) Spontaneous alternation rate and total number of arm entries in the Y-maze test. (I) Total exploration 223 224 time for the two objects and the novel object ratio during the NOR test. The data are

- shown as the means \pm SEM; CT: n = 9, PWSDS: n = 9, CSDS: n = 7; * indicates
- significant differences as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

Fig. S4 The gating strategy for microglia identification. (A, B) Single cells were
selected by excluding debris and doublets through FSC-A, FSC-H, and SSC-A plots.
(C) Microglia were identified as the CD11b⁺ and CD45^{int} population. (D) In the
microglia population, CD86⁺ microglia are labeled as M1-type microglia, and CD206⁺
microglia are labeled as M2-type microglia.

Fig. S5 Effects of PWSDS on the proliferation and activation of microglia in the mPFC, NAc, Amy, HT, and vHP. (A) Activated microglia and total microglia in different subregions of the mPFC. (B) Activated microglia and total microglia in different subregions of the Amy. (C) Activated microglia and total microglia in different subregions of the HT. (D) Activated microglia and total microglia in different subregions of the vHP. (E) Activated microglia and total microglia in different subregions of the NAc. The data are shown as the mean \pm SEM; n = 5; * indicates

242 significant differences as follows: p < 0.05, p < 0.01.

Fig. S6 The effects of PWSDS on the key proteins of the NF-κB/NLRP3 signaling

246 pathway in the hippocampus in the dHP. (A) The representative blots for NF-κB,

247 pNF- κ B, NLRP3, and β -actin. (B) The relative expression levels of NLRP3 normalized

248 to β -actin (CT: n = 6, PWSDS: n = 5). (C) The quantification of the pNF- κ B /total NF-

249 κ B ratio, normalized to the corresponding total NF- κ B levels (CT: n = 6, PWSDS: n =

250 5).

252

253 Fig. S7 The effects of fluoxetine treatment on microglial proliferation/activation in

the Amy of PWSDS-exposed mice. (A) The representative images of iba1(green) and DAPI (blue) staining. (B-D) Activated microglia and total microglia in different subregions of the Amy (n = 6). The data are shown as the means \pm SEM; * indicates significant differences as follows: *p < 0.05.

3. Supplemental Tables

	Fig. 2			
Figures	Sample numbers	Detection indicators	Statistical results	
Fig.2B (Repeated measures ANOVA)	CT: n = 9 PWSDS: n = 11	Weight gain (g)	F (1, 18) = 34.14; <i>p</i> < 0.0001	
Fig.2C (T-test)	Fig.2C (T-test)CT: $n = 5$ PWSDS: $n = 4$ Corticosterone (ng/ml)t =		t = 2.618; p = 0.0345	
Fig.2D (T-test)	CT: n = 5 PWSDS: n = 5	Relative adrenal weight (mg/g)	t = 2.662; p = 0.0287	
Fig.2E (T-test)	CT: n = 9 PWSDS: n = 11	Interaction ratio (%)	t = 0.1506; p = 0.8820	
Fig.2F	CT: n = 9 PWSDS: n = 11	Time in the center zone (s)	t = 2.896; <i>p</i> = 0.0096	
(T-test)	CT: n = 9 PWSDS: n = 11	Latency to center zone (s)	t = 3.124; p = 0.0059	
Fig.2G	CT: n = 9 PWSDS: n = 11	Open arm: time (s)	t = 4.136; p = 0.0006	
(T-test)	CT: n = 9 PWSDS: n = 11	Open arm: entries	t = 3.185; p = 0.0051	
Fig.2H (T-test)	CT: n = 9 PWSDS: n = 11	Time in light zone (s)	t = 2.613; <i>p</i> = 0.0176	
Fig.2I (T-test)	CT: n = 9 PWSDS: n = 11	Immobility time (s)	t = 2.818; p = 0.0118	
Fig.2J (T-test)	CT: n = 9 PWSDS: n = 11	Immobility time (s)	t = 5.102; <i>p</i> < 0.0001	
Fig.2K	CT: n = 9 PWSDS: n = 11	Sucrose preference ratio (%)	t = 5.340; <i>p</i> < 0.0001	
(1-test)	CT: n = 9 PWSDS: n = 11	Total water intake	t = 0.1450; p = 0.8863	

Table S1 Statistics of all results in this study are provided.

		(g)	
Fig.2L	CT: n = 9 PWSDS: n = 11	Explore object time ratio (%)	t = 8.430; <i>p</i> < 0.0001
(T-test)	CT: n = 9 PWSDS: n = 11	Total explore time (s)	t = 2.092; p = 0.0509
Fig.2M	CT: n = 9 PWSDS: n = 11	Spontaneous alternation (%)	t = 3.981; p = 0.0009
(T-test)	CT: n = 9 PWSDS: n = 11	Entries (number)	t = 1.334; <i>p</i> = 0.1987
		Fig. 3	
		IL-6 mRNA	t = 2.207; p = 0.0519
		IL-1β mRNA	t = 0.01081; p = 0.9916
		TNF-α mRNA	t = 2.320; p = 0.0427
Fig.3A	CT: $n = 6$	IL-18 mRNA	t = 0.7384; p = 0.4773
(T-test)	PWSDS: $n = 6$	IL-1Rα mRNA	t = 1.542; p = 0.1540
		MPO mRNA	t = 1.133; p = 0.2838
		MIF mRNA	t = 0.3439; p = 0.7380
		CRP mRNA	t = 2.279; p = 0.0458
	CT: n = 4 PWSDS: n = 4	IL-6 concentration	t = 1.505; p = 0.1830
Fig.3B (T-test)		TNF-α concentration (pg/ml)	t = 3.233; <i>p</i> = 0.0178
		(ng/ml)	t = 2.086; p = 0.0820
		Active iba1 ⁺ cells/mm ² (CA1)	t = 7.880; <i>p</i> < 0.0001
	CT: n = 5 PWSDS: n = 5	Active iba1 ⁺ cells/mm ² (CA3)	t = 7.422; <i>p</i> < 0.0001
Fig.3E		Active iba1 ⁺ cells/mm ² (DG)	t = 6.326; p = 0.0002
(T-test)	CT: n = 5	Iba1 ⁺ cells/mm ² (CA1)	t = 3.262; p = 0.0115
	PWSDS: $n = 5$	Iba1 ⁺ cells/mm ² (CA3)	t = 3.769; p = 0.0055
		Iba1 ⁺ cells/mm ² (DG)	t = 3.187; p = 0.0129
		mPFC and OF	r = -0.634; p = 0.049
		Amy and LDB	r = -0.758; p = 0.011
		Amy and EPM	r = -0.914; p = 0.000
		Amy and SPT	r = -0.659; p = 0.038
Fig.2F	CT: n = 5	HT and OF	r = -0.646; p = 0.043

(Pearson	PWSDS: $n = 5$	HT and EPM	r = -0.726; p = 0.018
correlation)		HT and SPT	r = -0.701; p = 0.024
		dHP and FST	r = 0.687; p = 0.028
		dHP and TST	r = 0.715; p = 0.020
		dHP and SPT	r = -0.824; p = 0.003
		dHP and NOR	r = -0.883; p = 0.001
		dHP and Y-maze	r = -0.643; p = 0.045
		vHP and OF	r = -0.665; p = 0.036
		Fig. 4	
Fig 1A	CT: n = 8	IL-6 mRNA	t = 2.287; p = 0.0383
ГI <u>g</u> .4А (T. test)	PWSDS: $n = 8$	IL-1β mRNA	t = 2.738; p = 0.0160
(1-lest)		TNF-α mRNA	t = 2.149; p = 0.0496
Fig.4D	CT: n = 5	M1: Microglia (%)	t =2.320; <i>p</i> = 0.0490
(T-test)	PWSDS: $n = 5$	M2: Microglia (%)	t =6.594; <i>p</i> = 0.0002
		Fig. 5	
	CT-Sal: $n = 9$		Interaction effect: $F(1, 37) = 3.327; p =$
Fig 5B	CT- $Flu: n = 10$		0.0762
(Two-way	PWSDS-Sal: $n = 12$	Interaction ratio	Drug effect: F $(1, 37) = 4.413; p =$
(1 WO-Way)	PWSDS-Flu: $n = 10$	(%)	0.0425
1110011			Model effect: F (1, 37) = 25.22; $p <$
			0.0001
Fig.5B	CT-Sal: $n = 9$		
(Two-way	CT- $Flu: n = 10$	Time in the center	Model effect: F $(1, 37) = 4.192; p =$
ANOVA)	PWSDS-Sal: $n = 12$	zone (s)	0.0478
,	PWSDS-Flu: n = 10		
			Interaction effect: F $(1, 37) = 0.4444; p$ = 0.5092
	CT-Sal: $n = 9$	Time in light zone	Drug effect: F $(1, 37) = 8.622; p =$
Fig 5D	CT- $Flu: n = 10$	(s)	0.0057
(Two-way	PWSDS-Sal: $n = 12$		Model effect: F (1, 37) = 22.67; $p <$
ANOVA)	PWSDS-Flu: $n = 10$		0.0001
			Interaction effect: $F(1, 37) = 4.369; p =$
		Latency to entry	0.0435
		light zone (s)	Post-hoc: PWSDS-Sal vs. PWSDS-Flu:
			<i>p</i> = 0.0089
	CT-Sal: $n = 9$		Interaction effect: $F(1, 37) = 8.436; p =$
Fig.5E	CT-Flu: $n = 10$		
(Two-way	PWSDS-Sal: n = 12	Open arm: time (s)	Post-hoc: CT-Sal vs. PWSDS-Sal: $p < 0.0001$
ANOVA)	PWSDS-Flu: n = 10		
			PWSDS-Sal vs. PWSDS-Flu: $p = 0.0242$
EL FE	CT C 1 0		U.U.342
F1g.3F	C1-Sal: n = 9	Immobility time (s)	Interaction effect: $F(1, 37) = 0.001165;$
(Two-way CT-Flu: n = 10		p = 0.9/30	

ANOVA)	PWSDS-Sal: $n = 12$		Model effect: F $(1, 37) = 3.920; p =$	
	PWSDS-Flu: $n = 10$		0.0552	
Fig.5G (Two-way ANOVA)	CT-Sal: n = 9 CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Immobility time (s)	Interaction effect: F $(1, 37) = 9.336$; $p = 0.0042$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0007$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0055$	
Fig.5H (Two-way	CT-Sal: n = 9 CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Sucrose preference ratio (%)	Interaction effect: F (1, 37) = 5.679; $p = 0.0224$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0050$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0199$	
	CT-Sal: n = 9 CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Total water intake (g)	Interaction effect: F (1, 37) = 0.5922; p = 0.4464	
		Total explore time (s)	Interaction effect: F $(1, 37) = 0.7135; p$ = 0.4037	
Fig.5I (Two-way ANOVA)	CT-Sal: n = 9 CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Explore object time ratio (%)	Interaction effect: F (1, 37) = 26.88; p < 0.0001 Post-hoc: CT-Sal vs. PWSDS-Sal: p < 0.0001 PWSDS-Sal vs. PWSDS-Flu: p < 0.0001	
	CT-Sal: $n = 9$	Total explore time (s)	Interaction effect: F (1, 37) = 0.3932 ; p = 0.5345	
Fig.5J (Two-way ANOVA)	CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Explore object time ratio (%)	Interaction effect: F (1, 37) = 11.18; $p = 0.0019$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0006$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0017$	
Fig.5K (Two-way ANOVA)	CT-Sal: n = 9 CT-Flu: n = 10 PWSDS-Sal: n = 12 PWSDS-Flu: n = 10	Spontaneous alternation (%)	Interaction effect: F $(1, 37) = 6.317$; $p = 0.0164$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0041$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0184$	
		Entries (number)	Interaction effect: F (1, 37) = 0.01452 ; p = 0.9047	
Fig. 6				

		IL-6 mRNA	Interaction effect: F $(1, 16) = 2.894; p = 0.1082$
		IL-1β mRNA	Interaction effect: F (1, 16) = $0.2587; p$ = 0.6179 Model effect: F (1, 16) = 81.70; $p < 0.0001$
		TNF-α mRNA	Interaction effect: F (1, 16) = 0.04255 ; p = 0.8392 Drug effect: F (1, 16) = 5.637 ; $p = 0.0304$
Fig.6A	CT-Sal: n = 5 CT-Flu: n = 5	IL-18 mRNA	Interaction effect: F (1, 16) = $0.3259; p$ = 0.5760
(Two-way ANOVA)	PWSDS-Sal: n = 5 PWSDS-Flu: n = 5	IL-1Rα mRNA	Interaction effect: F $(1, 16) = 1.998; p = 0.1766$
		MPO mRNA	Interaction effect: F $(1, 16) = 2.472; p = 0.1355$
	(7ay A) $CT-Sal: n = 6CT-Flu: n = 6PWSDS-Sal: n = 6PWSDS-Flu: n = 6(Note: TNF-\alpha andCRP each had onesample was notdetected, and thenremoved.)$	MIF mRNA	Interaction effect: F (1, 16) = 0.009658 ; p = 0.9229
		CRP mRNA	Interaction effect: F (1, 16) = 4.976; $p = 0.0404$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0408$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0154$
		IL-1β concentration (pg/ml)	Interaction effect: F (1, 20) = 0.02072 ; p = 0.8870 Drug effect: F (1, 20) = 4.947 ; $p = 0.0378$ Model effect: F (1, 20) = 10.37 ; $p = 0.0043$
Fig.6B (Two-way ANOVA)		TNF-α concentration (pg/ml)	Interaction effect: F $(1, 19) = 4.518; p = 0.0469$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p = 0.0175$ PWSDS-Sal vs. PWSDS-Flu: $p = 0.0419$
		CRP concentration (ng/ml)	Interaction effect: F $(1, 19) = 57.14$; $p < 0.0001$ Post-hoc: CT-Sal vs. PWSDS-Sal: $p < 0.0001$ PWSDS-Sal vs. PWSDS-Flu: $p < 0.0001$
Fig.6D		Activated iba1 ⁺	Interaction effect: $F(1, 20) = 12.80; p =$

(Two-way		cells/mm ² (CA1)	0.0019
ANOVA)			Post-hoc: CT-Sal vs. PWSDS-Sal: $p =$
			0.0002
	CT-Sal: $n = 6$		PWSDS-Sal vs. PWSDS-Flu: $p =$
	CT- $Flu: n = 6$		0.0034
	PWSDS-Sal: $n = 6$		Interaction effect: $F(1, 20) = 18.23; p =$
	PWSDS-Flu: $n = 6$		0.0004
		Iba1 ⁺ cells/mm ²	Post-hoc: CT-Sal vs. PWSDS-Sal: p <
		(CA1)	0.0001
			PWSDS-Sal vs. PWSDS-Flu: p =
			0.0010
			Interaction effect: $F(1, 20) = 5.361; p =$
			0.0313
		Activated iba1 ⁺	Post-hoc: CT-Sal vs. PWSDS-Sal: $p =$
	CT-Sal: n = 6 CT-Flu: n = 6	cells/mm ² (CA3)	0.0016
Eig (E			PWSDS-Sal vs. PWSDS-Flu: p =
(Two way			0.0095
(1 wo-way)	PWSDS-Sal: $n = 6$		Interaction effect: $F(1, 20) = 11.36; p =$
ANOVA)	PWSDS-Flu: $n = 6$		0.0030
		Iba1 ⁺ cells/mm ²	Post-hoc: CT-Sal vs. PWSDS-Sal: $p =$
		(CA3)	0.0006
			PWSDS-Sal vs. PWSDS-Flu: $p =$
			0.0079
			Interaction effect: $F(1, 20) = 18.28; p =$
			0.0004
		Activated iba1 ⁺	Post-hoc: CT-Sal vs. PWSDS-Sal: $p =$
		cells/mm ² (DG)	0.0002
Fig 6F	CT-Sal: $n = 6$		PWSDS-Sal vs. PWSDS-Flu: $p <$
Tug.01	CT- $Flu: n = 6$		0.0001
(1 wo-way)	PWSDS-Sal: $n = 6$		Interaction effect: $F(1, 20) = 13.41; p =$
ANOVA)	PWSDS-Flu: $n = 6$		0.0015
		Iba1 ⁺ cells/mm ²	Post-hoc: CT-Sal vs. PWSDS-Sal: $p =$
		(DG)	0.0009
			PWSDS-Sal vs. PWSDS-Flu: $p =$
			0.0024

		PWSDS		
Dhanatuna	Dehaviore	First	Second	Third
тпепотуре	Dellaviol S	(CT: n=9,	(CT: n=11,	(CT: n=10,
		PWSDS: n=11)	PWSDS: n=11)	PWSDS: n=10)
	Social avoidance (interactive ratio)	_	↓*	
Anxiety	Open field (time in center area)	↓**	↓*	↓*
	LDB (time in light box)	↓*	↓***	↓**
	EPM (time in open arm)	↓***	↓**	$\downarrow p = 0.0663$
Depression	TST (immobility time)	^ *		1 *
	FST (immobility time)	^ ***	^ ***	^ ***
	SPT (sugar preference ratio)	↓***	↓*	↓**
Cognition	NOR (discrimination ratio)	↓***	↓**	↓**
	Y-maze (Spontaneous alternation)	↓ ***	↓*	↓ **

261 Table S2 The behavioral alterations of PWSDS-exposed mice in three repeated262 modeling experiments.

Note: "*" versus CT mice; "—" is no significance. 263

	HCs (N = 69)	MDD (N = 40)		D
	N (%)	N (%)	$-\chi^2$	P-value
Gender, female	40 (58.0)	32 (80.0)	5.480	0.019
Smoking				
Never	56 (81.2)	32 (80.0)	0.104	0.040
Former	4 (5.8)	2 (5.0)	0.104	0.949
smoker	9 (13.0)	6 (15.0)		
Marriage				
Married	37 (53.6)	22 (55.0)	(505	0.027
Divorced	1 (1.4)	5 (12.5)	6.393	0.037
Single	31 (44.9)	13 (32.5)		
Employment				
status				
Full-time job	67 (97.1)	23 (57.5)	28.388	0.000
Part-time job	1 (1.4)	2 (5.0)		
No job	1 (1.4)	15 (37.5)		
Family history of				
psychiatric disorders				
No family history	67 (97.1)	33 (82.5)	7.127	0.008
Family history of	2(20)	7(175)		
psychiatric disorder	2 (2.9)	/(17.5)		
	M (P25, P75)	M (P25, P75)	Z	P-value
Age (years)	31.0 (25.0, 36.0)	33.5 (27.3, 46.8)	1.932	0.053
BMI	22.9 (20.2, 24.7)	20.8 (18.9, 22.4)	-2.619	0.009
Education (years)	16.0 (14.0, 17.0)	15.0 (12.0, 16.0)	-2.371	0.018
Age of onset				
(years)	-	31.0 (23.0, 39.8)	-	-

Table S3 Demographic and clinical characteristics of all subjects.

Abbreviations: HCs, healthy controls; MDD, major depressive disorder; BMI, body mass index.

Gene	Forward Primer (5' - 3')	Reverse Primer (5' - 3')
GAPDH	TGTTCCTACCCCAATGTGT	TGTGAGGGAGGATGCTCAGTG
IL-1β	TCAAATCTCGCAGCAGCACATC	CGTCACACACCAGCAGGTTATC
IL-6	ACTTCCAGCCAGTTGCCTTCTTG	TGGTCTGTTGTGGGTGGTATCCTC
TNF-α	TCGTAGCAAACCACCAAGCG	AGAGAACGGATGAACACGCCA
IL-18	GCGTCAACTTCAAGGAAATGATGT	TGTCAACGAAGAGAACTTGGTCAT
MPO	CCTCCATGCACACCCTCTTT	GCAGGTAGTCCCGGTATGTG
MIF	CTTTGTACCGTCCTCCGGTC	CTCCGACAGAAACCCCTCTG
CRP	GGGTGGTGCTGAAGTACGAT	AGTGTAGCCCTTGTGCAGAC

Table S4 Primer sequences for qRT-PCR experiments.