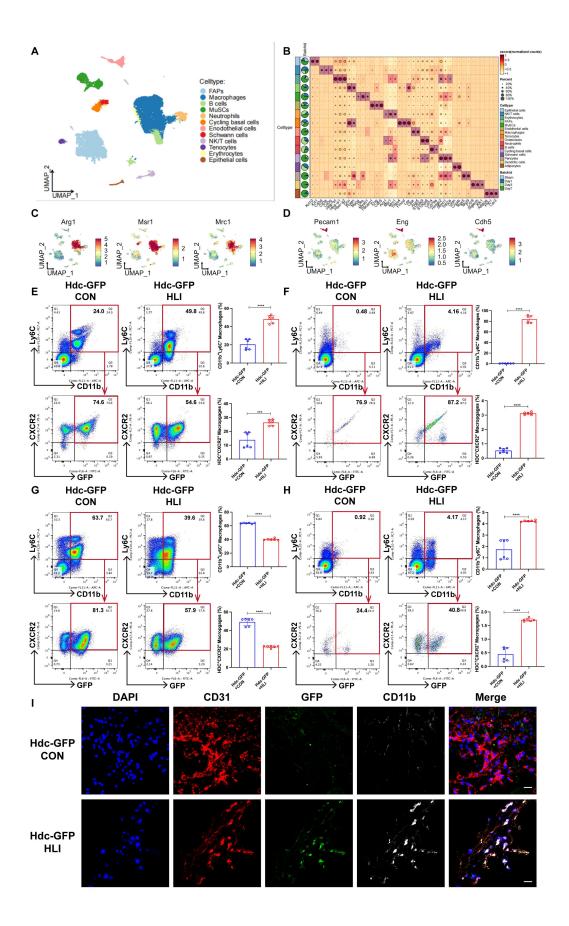
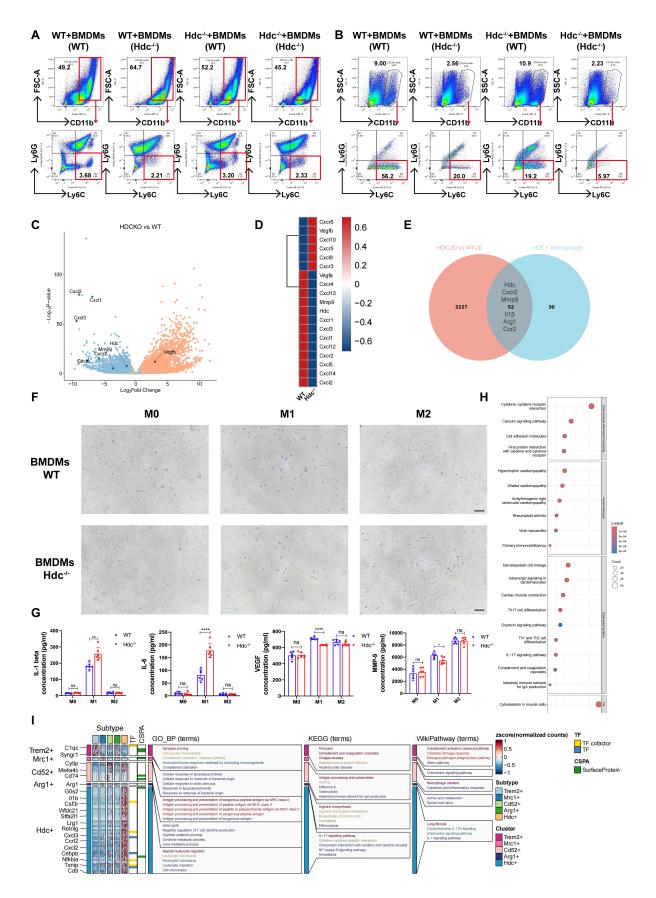

1 Supplementary Figures

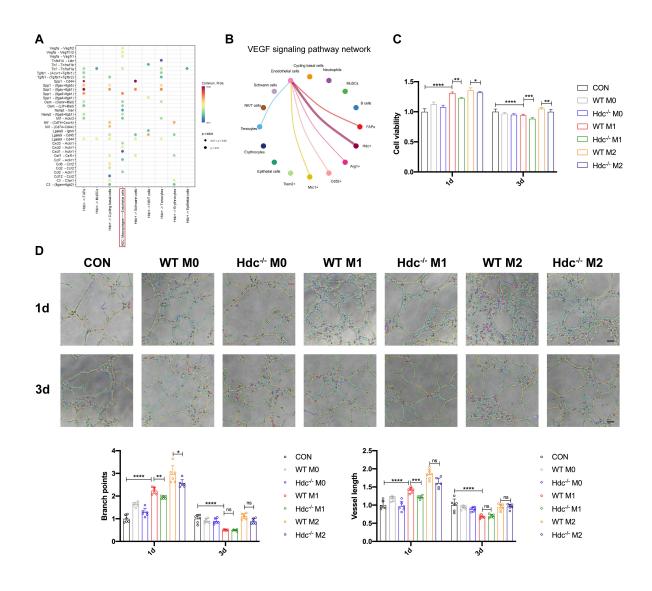
2


3 Fig. S1. The Deletion of Hdc Impairs Hindlimb Ischemia (HLI)-Induced Revascularization.

- 4 (A) A picture of the ischemic limb is shown at each point per group. Each photograph was taken
- 5 under the same conditions (n=6).



1


Bone Fig. marrow-derived macrophages (BMDMs) are the 2 S2. predominant HDC-expressing sites during HLI. (A) RT-qPCR showing mRNA levels of HDC mRNA in 3 BMDMs and HUVECs (n=6). (B) ELISA of secreted Histamine from BMDMs and HUVECs 4 (n=6). (C) Representative images and quantification of FACS analysis of the GFP⁺ cell 5 percentage in the bone marrow of Hdc-GFP⁺ mice before and 3 days after HLI (n=6). (D) 6 Representative images and quantification of FACS analysis of the GFP⁺ cell percentage in the 7 spleen of Hdc-GFP⁺ mice before and 3 days after HLI (n=6). (E) Representative images of HDC 8 9 (red), GFP (green), CD11b (white) and DAPI (blue) immunostainings of bone marrow derived macrophages of Hdc-GFP⁺ mice; Scale bar, 20µm. For all experiments, error bars represent the 10 mean \pm SD. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001 11

2 Fig. S3. Single-cell transcriptomics analysis suggests an association between HDC⁺ macrophages and angiogenesis during the process of HLI (A) Reference-based integration of 3 skeletal muscle mononucleated cell datasets prepared from WT mice (GSE227075). (B) Dot plot 4 of selected marker genes for each cluster and lineage in aggregate cell clusters. 5 (C) Feature plot showing Arg1, Msr1, and Mrc1 gene expression in macrophages. (D) Feature plot showing 6 7 Pecam1, Eng, and Cdh5 gene expression in endothelial cells. (E) Representative images and 8 quantification of FACS analysis of the HDC⁺CXCR2⁺ cell percentage in the peripheral blood of Hdc-GFP mice before and 1 days after HLI (n=6). (F) Representative images and quantification 9 of FACS analysis of the HDC⁺CXCR2⁺ cell percentage in the muscle tissue of Hdc-GFP mice 10 11 before and 1 days after HLI (n=6). (G) Representative images and quantification of FACS analysis of the HDC⁺CXCR2⁺cell percentage in the bone marrow of Hdc-GFP⁺ mice before and 12 1 days after HLI (n=6). (H) Representative images and quantification of FACS analysis of the 13 HDC⁺CXCR2⁺cell percentage in the spleen of Hdc-GFP⁺ mice before and 1 days after HLI (n=6). 14 (I)Representative images of CD31 (red), Hdc-GFP (green), CXCR2 (White) and DAPI (blue) 15 immunostainings of gastrocnemius muscle of Hdc-GFP mice before and 3 days after HLI; Scale 16 bar, 50µm. For all experiments, error bars represent the mean \pm SD. *P < 0.05, **P < 0.01, ***P 17 < 0.001, ****P < 0.0001 18

2 Fig. S4. Hdc knockout induced atypical macrophage polarization and down-regulated pro-angiogenic factors expression during HLI by regulating NF-kB and MAPK pathways 3 (A) Representative images of FACS analysis of the macrophage's percentage in the peripheral 4 blood of WT and Hdc^{-/-} mice transplanted with bone marrow of each other 3 days after HLI. (B) 5 Representative images of FACS analysis of the macrophage's percentage in the muscle tissue of 6 WT and Hdc^{-/}- mice transplanted with bone marrow of each other 3 days after HLI. (C) 7 Volcano plot of the expression difference between ischemia muscle tissue of WT mice and Hdc-/-8 mice 3 days after HLI. Red dots indicate transcripts that were increased (padj< 0.05, Log2 fold 9 change > 1), whereas blue dots indicate decreased transcripts (padj < 0.05, Log2 fold change < 1). 10 (D) Heat map of the expression difference between ischemia muscle tissue of WT mice and 11 Hdc^{-/-} mice 3 days after HLI. (E) Venn diagram showing the common expression difference 12 13 between sc-RNA-seq before and after HLI in WT mice and RNA-seq in WT mice and Hdc^{-/-} mice 3 days after HLI. (F) Optical microscope image of M0 Macrophages, M1 Macrophages, 14 and M2 Macrophages collected from bone marrow of WT and Hdc^{-/-} mice; Scale bar, 50µm. (G) 15 Elisa of secreted IL-1β, Il-6, VEGFA, and MMP-9 from BMDMs of WT and Hdc^{-/-} mice. 16 BMDMs were treated with LPS/IFN- γ or IL-4/IL-13 for 24 h (n=6). (H) Heat map showing 17 KEGG enrichment analyses of ischemia muscle tissue of WT mice and Hdc^{-/-} mice 3 days after 18 HLI. (I) Heat map showing GO enrichment analyses, KEGG enrichment analyses and Wiki 19 Pathway of five macrophage subtypes. For all experiments, error bars represent the mean \pm 20 SD.*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 21

1

Fig. S5. HDC⁺ macrophages combine to endothelial cells via CXCR2-CXCL2 loop and promote angiogenesis mediated by VEGF, MMP-9, and IL-1 β (A) Heatmap of HDC⁺ macrophage interacts with various types cells in skeletal muscle. (B) Cell chat showing HDC⁺ macrophage interacts with various types cells though VEGF in skeletal muscle. Edges are scaled by the inferred regulatory potential of the interaction. (C) CCK8 cell proliferation test of HUVECs co-cultured with WT BMDM and Hdc-/- BMDM for 1 day and 3 days. HUVECs were pretreated with 10 μ M H₂O₂ and 1 μ m AST; BMDMs were treated with LPS/IFN- γ or IL-4/IL-13

9 for 24 h; Scale bars, 50 μ m; (n=6). (**D**) Representative images and quantification of tube 10 formation assay of HUVECs co-cultured with WT BMDM and Hdc^{-/-} BMDM for 1day and 11 3days. HUVECs were pretreated with 10 μ M H₂O₂ and 1 μ m AST; BMDMs were treated with 12 LPS/IFN- γ or IL-4/IL-13 for 24 h; Scale bars, 50 μ m; (n=6). For all experiments, error bars 13 represent the mean ± SD.*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

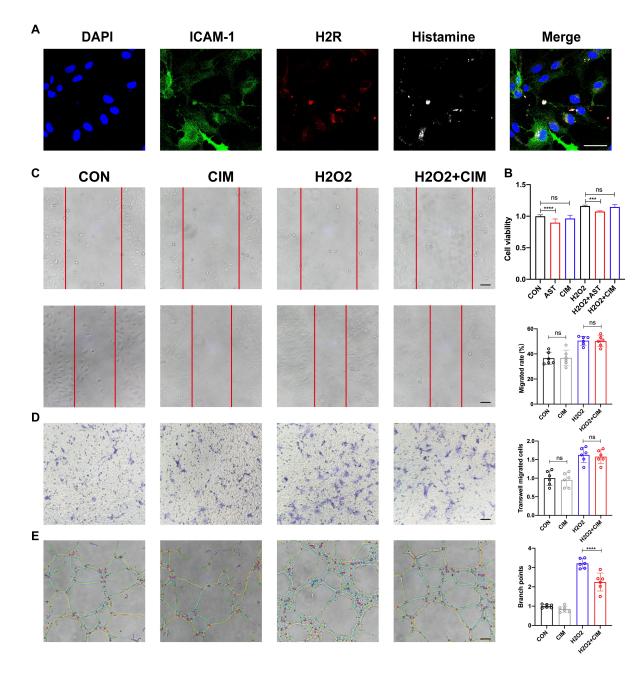


Fig. S6. Histamine promotes endothelial cell migration and tube formation by activating
H₁R and CXCL/PI3K/AKT signaling pathway (A) Representative images of ICAM-1(green),
H₂R (red), histamine (white) and DAPI (blue) immunostainings of HUVECs; scale bar, 20μm.
(B) CCK8 cell proliferation test of HUVECs cultured in conditioned medium with or without
1μM AST or CIM. HUVECs were pretreated with 10μM H₂O₂. (n=6). (C) Representative

7 images and quantification of scratch wound healing assay of HUVECs cultured in conditioned medium with or without 1µM CIM. HUVECs were pretreated with 10µM H₂O₂. Scale bars, 8 50µm, (n=6). (D) Representative images and quantification of transwell assays of HUVECs 9 10 cultured in conditioned medium with or without 1µM CIM. HUVECs were pretreated with 10µM H₂O₂. Scale bars, 50µm, (n=6). (E) Representative images and quantification of tube 11 formation assay of HUVECs cultured in conditioned medium with or without 1µM CIM. 12 HUVECs were pretreated with 10µM H₂O₂. Scale bars, 50 µm, (n=6). For all experiments, error 13 bars represent the mean \pm SD.*P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.000 14

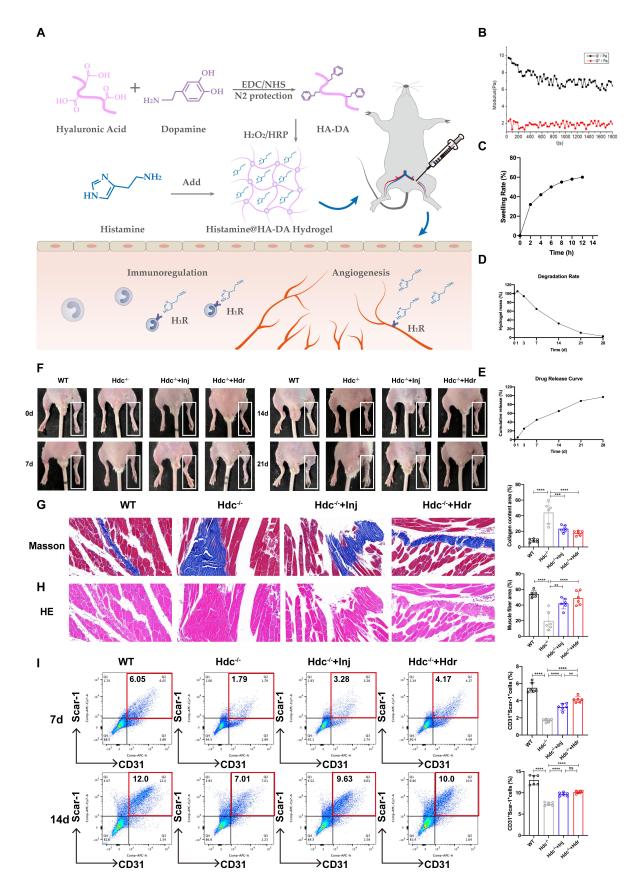


Fig. S7. Histamine-delivering Hydrogel promotes skeletal muscle regeneration in Hdc^{-/-} 1 mice after HLI by regulating angiogenesis and inflammatory disorders (A) Schematic 2 illustration on gene therapy strategy of HA-DA@histamine hydrogel or delivering histamine to 3 ischemic limb to promote angiogenesis, reduce ischemia-induced muscle damage and restore 4 limb function. (B) Rheological properties of HA-DA@histamine hydrogel at 37°C. (C) Swelling 5 rate of HA-DA@histamine hydrogel at 37°C in PBS. (D) Degradation rate of 6 HA-DA@histamine hydrogel at 37°C in PBS. (E) The release rate of histamine from 7 HA-DA@histamine hydrogel at 37°C in PBS. (F) A picture of the ischemic limb is shown at 8 each point per group. Each photograph was taken under the same conditions. (G) Representative 9 images and quantitative analysis of Masson' s staining of injured gastrocnemius muscle from 10 each group at day 21 post injury in ischemic muscles (n=6); Scale bar, 50µm. (H) 11 12 Representative images and quantitative analysis of H&E staining of injured gastrocnemius muscle from each group at day 21 post-injury in ischemic muscles (n=6); Scale bar, 50µm. (I) 13 Representative flow cytometry plots with quantification of $CD31^+$ Sca-1⁺ endothelial cells (n=6). 14 For all experiments, error bars represent the mean \pm SD.*P < 0.05, **P < 0.01, ***P < 0.001, 15 ****P < 0.0001. 16

1 Supplementary Tables

2 Table S1. Animals (in vivo studies)

Species	Vendor or Source	Background Strain
Wide type mice	Department of Laboratory Animal Science at Fudan University	Balb/C
Hdc ^{-/-} mice	Supplied by Professor Timothy C. Wang	Balb/C
Hdc-GFP mice	Supplied by Professor Timothy C. Wang	Balb/C

Experiments	Antibodies	Cat No.	Company
Macrophage identification and	CD45	147709	Biolegend
polarization	CD11b	101211	Biolegend
	Ly6C	128018	Biolegend
	Ly6G	127616	Biolegend
	F4/80	123110	Biolegend
	CD86	374207	Biolegend
	CD206	321121	Biolegend
Endothelial cells	CD31	102410	Biolegend
and angiogenesis	Scar-1	108125	Biolegend

1 Table S2. Fluorochrome-conjugated antibodies used in flow cytometry analysis

1 Table S3. Primary antibodies used in experiments

Experiments	Antibodies	Cat No.	Company	
Immunofluorescence and	CD31	ab182981	Abcam	
immunohistochemistry assay	CD68	ab283654	Abcam	
	α-SMA	ab179467	Abcam	
Western blot	CXCR-2	A3301	Abcronal	
	ERK	#4695	Cell Signaling Technology	
	p-ERK	#4370	Cell Signaling Technology	
	iKBα	#4812	Cell Signaling Technology	
	p-iKBa	#2859	Cell Signaling Technology	
	PI3K(p85)	ab191606	Abcam	
	AKT	#4691	Cell Signaling Technology	
	p-AKT	#4060	Cell Signaling Technology	

Gene	Sequence 5'-3'	Species
Gapdh	F: CCACTCACGGCAAATTCAAC	
Hdc	R: GTAGACTCCACGACATACTCAG	
	F: TGCCTGTGTTTGTCTGTGCAACG	
	R: ATCTGCCAATGCATGAAGTCCGTG	
II D	F: GCCTGGTTTCTCTCCTTCCT	
H_1R	R: TGAGCAAAGTGGGGGAGGTAG	
Il1β	F: ACTCATTGTGGCTGTGGAGA	
шр	R: TTGTTCATCTCGGAGCCTGT	
I16	F: CTGGGGATGTCTGTAGCTCA	
110	R: CTGTGAAGTCTCCTCTCCGG	Mus musculus
A	F: CTGAGCTTTGATGTCGACGG	Mus musculus
Arg-1	R: TCCTCTGCTGTCTTCCCAAG	
Mrc-1	F: TGGATGGATGGGAGCAAAGT	
WIIC-I	R: GCTGCTGTTATGTCTCTGGC	
Vacto	F: TCTCCTTCCTCTCTATTCACCT	
Vegfa	R: CATCCACCAGTCCATATACCTC	
Vach	F: CTATGACCGATTCCTGTCAGTC	
Vegfb	R: CGTGATGAGAAAGTACCAGTTG	
Mmm 0	F: TGGGCGTTAGGGACAGAAAT	
Mmp-9	R: GAACCATAACGCACAGACCC	
Candh	F: GGCTGTTGTCATACTTCTCATGG	
Gapdh	R: GGCTGTTGTCATACTTCTCATGG	
Hdc	F: ATGCACGCCTACTACCCAG	
нас	R: CAGTCCATGACGTTCATCTCC	
H_1R	F: AGATGTGTGAGGGCAACAAGA	
$\Pi_1 K$	R: CAAGCAGATAGTGCTCAGGAC	
Vcam-1	F: GGGAAGATGGTCGTGATCCTT	
v cam-1	R: TCTGGGGTGGTCTCGATTTTA	
Cxcl-1	F: ACTCTACCTGCACACTGTCC	
CXCI-I	R: TCCCCTGCCTTCACAATGAT	
Cxcl-2	F: CGCCCAAACCGAAGTCATAG	Home agricus
CXCI-2	R: CTCTGCAGCTGTGTCTCTCT	Homo sapiens
Cxcl-5	F: AGCTGCGTTGCGTTTGTTTAC	
CXCI-5	R: TGGCGAACACTTGCAGATTAC	
Cxcl-9	F: CCAGTAGTGAGAAAGGGTCGC	
Cxcl-9	R: AGGGCTTGGGGGCAAATTGTT	
Cxcl-10	F: GTGGCATTCAAGGAGTACCTC	
CXCI-10	R: TGATGGCCTTCGATTCTGGATT	
C1 12	F: ATTCTCAACACTCCAAACTGTGC	
Cxcl-12	R: ACTTTAGCTTCGGGTCAATGC	
C 1 12	F: GCTTGAGGTGTAGATGTGTCC	
Cxcl-13	R: CCCACGGGGCAAGATTTGAA	

1 Table S4. Primary antibodies used in experiments

1 Table S5. Result of Mendelian randomization (MR)

Outcome	Exposure	Method	nsnp	b	se	pval
	Ant-ihistamine medication	MR Egger	10	0.653251919	0.455050691	0.189049289
Sequel of lower limb injuries Sequel of lower	Anti-histamine medication	Weighted median	10	0.466976953	0.195508223	0.016915998
limb injuries Sequel of lower limb injuries Sequel of lower	Anti-histamine medication	Inverse variance weighted	10	0.353664617	0.152956643	0.020767288
limb injuries Sequel of lower limb injuries	Anti-histamine medication	Simple mode	10	0.4745811	0.3127703	0.163489992
	Anti-histamine medication	Weighted mode	10	0.500100985	0.310773482	0.142030465

1 Table S6. Horizontal pleiotropy tests of Mendelian randomization (MR)

Outcome	Exposure	egger_intercept	se	pval
Sequel of lowe limb injuries	r Anti-histamine medication	-0.025768518	0.036863073	0.504343372

3 Table S7. Pleiotropy test of Mendelian randomization (MR)

Outcome	Exposure	Method	Q	Q_df	Q_pval
Sequel of low limb injuries	ver Anti-histamine medication	MR Egger	4.558602914	8	0.803541838
Sequel of low limb injuries	ver Anit-ihistamine medication	Inverse variance weighted	5.047250567	9	0.830170001