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Chronic diseases, including cancer, 
cardiovascular diseases, metabolic diseases, and 
neurodegeneration, pose a significant burden to 
global health. While conventional pharmacological 
treatments have been first-line therapeutics for 
primary, secondary and tertiary prevention, 
innovative approaches are needed. In the past two 
decades since the sequencing of the human genome, 
there has been greater appreciation for the role of 
physical exercise in improving, maintaining or 
restoring homeostasis in the human body.  

Skeletal muscle contraction during an acute bout 
of exercise elicits a complex array of molecular 
responses in multiple organ systems. Such molecular 
signals continue to persist, after the exercise and thus 
the long-term accumulation of such exercise sessions 
culminate in systemic adaptations that extend beyond 
the musculoskeletal system - remodeling of organ 
systems occur and improvement in healthspan[1]. 
Acute exercise mobilizes thousands of proteins and 
peptides, mRNA, extracellular vesicles (EVs) and 
non-coding RNA systemically, transporting them to 
distant sites, and exert modulatory effects on the 
organs, including brain, adipose tissue, liver etc[2]. 
Recent studies in pre-clinical mouse models reveal 
promising evidence that plasma obtained after 
exercise training directly improves physiological 
outcomes in non-exercised recipients. Transfused 
plasma from exercised rats improved neuronal 
viability, decreased cell atrophy and increased 
neurogenesis by three-fold in transgenic Alzheimer’s 

Disease (AD) rat recipients[3]. Furthermore, exercised 
young (three-month old) murine plasma 
administered intravenously to old (18-month-old) 
mice resulted in increased proliferation of 
hippocampal neurons [4]. Exciting work on 
plasmapheresis is being pioneered in the United 
States of America (USA) and Norway. In the former, 
young male donors provided 1 unit (~250mL) of fresh 
frozen plasma (FFP) to patients with AD in a once per 
week infusion, followed by a 6-week washout period 
and crossover with saline treatment. The primary 
endpoints were safety, tolerability and feasibility of 
the intervention – all of which were met at the 
conclusion of the trial[5]. In the latter, the ongoing 
study involved blood plasma obtained from young, 
healthy and well-trained (aerobically fit) individuals 
and transfused intravenously to older adults with 
Alzheimer’s Disease at intervals of 3 months[6].  

Such recent investigations have given a glimpse 
of a novel translational application of 
exercise-induced adaptations for chronic disease 
management, particularly in oncology and neurology. 
In the next section, we elaborate on the molecular and 
cellular mechanisms that underlie the efficacy of 
exercise-induced plasma therapy, offering insights 
into its potential applications across diverse chronic 
disease contexts. 

The release of molecular mediators known as 
exerkines during skeletal muscle contractions are 
partly responsible for the multi-organ health benefits 
derived from physical exercise. Broadly, exerkines can 
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be classified into proteins and peptides, cytokines and 
chemokines, extracellular vesicles (EV), and 
metabolites.  

Proteins and peptides released during exercise 
may modulate tumor growth and metastasis by 
regulating angiogenesis, immune surveillance, and 
tumor cell proliferation. Irisin, for instance, inhibits 
angiogenesis and suppresses tumor cell proliferation 
in various cancer models[7]. Glycosylphosphatidyl-
inositol (GPI)-specific phospholipase D1 (Gpld1) was 
also identified as an exercise-induced, liver-derived 
enzyme (hepatokine) that confers cognitive function 
improvements to recipient aged mice via plasma 
administration from exercised donor mice[4]. Gpld1 
upregulation was identified in active, elderly human 
subjects compared with sedentary controls, but it has 
not been elucidated if it offers cognitive benefits for 
humans through exercise[4]. Of note, in vitro culture 
of murine and human pancreatic islets treated with 
post-exercise training serum (10% v/v) reduced p16 
and p21 cellular senescence markers, with further 
experiments indicating that, glucagon, behaving as an 
exerkine, could abate dysfunctional pancreatic 
metabolism patients with type 2 diabetes mellitus[8]. 
Recent advances in peptidomics have added novel 
candidates to the list of exerkines. For instance, the 

skeletal muscle-derived peptide, CCDC80tide, was 
released systemically after a single session of 
treadmill running in healthy young individuals[9]. 
This exerkine attenuated angiotensin II (Ang 
II)-induced cardiac hypertrophy and fibrosis in mice, 
primarily by modulating STAT3 phosphorylation. 

Exercise-induced changes in cytokine and 
chemokine expression and release from different 
organs may exert anti-tumor effects by modulating 
immune surveillance and tumor microenvironment. 
IL-6, for instance, has been implicated in promoting 
anti-tumor immunity through its effects on T cell 
function and tumor-associated macrophages[10]. 
IL-15, with its immunostimulatory properties, 
enhances the activity of natural killer cells and 
cytotoxic T lymphocytes, thereby augmenting 
anti-tumor immune responses[11]. 

EVs released during exercise may exert 
anti-tumor effects by delivering bioactive cargo, 
including miRNAs, proteins, and lipids, to recipient 
cells within the tumor microenvironment. 
Exercise-induced EVs have been shown to suppress 
tumor growth and metastasis by inhibiting 
angiogenesis, promoting immune surveillance, and 
inducing cancer cell apoptosis[12]. Moreover, EVs 
derived from exercised individuals can modulate 

 

 
Figure 1. Graphical illustration showing a summary of the mechanisms of exercise-conditioned plasma on selected biological functions in health and disease.    
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cellular metabolism through an increase in 
concentration for proteins such as Suclg1, Sdha, Sdhb, 
Acly, Idh3b, and Dlat which are involved in 
mitochondrial biogenesis and β-oxidation[13]. 
Further, EVs are also understood to be highly 
heterogenous in nature making it difficult to isolate 
proteins or mRNA of interest, however, the 
encapsuled EV content are more resistant to 
degradation[13]. 

During acute exercise, the production of 
metabolic byproducts may influence tumor 
metabolism and microenvironment, thereby affecting 
cancer cell proliferation, survival, and metastasis. 
β-hydroxybutyrate, a ketone body produced during 
fasting or low-carbohydrate states, has been 
implicated in suppressing cancer cell proliferation 
and inducing apoptosis through its effects on cellular 
metabolism and oxidative stress[14]. 

Despite the therapeutic potential of 
exercise-conditioned plasma, such an approach 
requires extensive evaluation of possible 
complications. Sha et al, demonstrated the safety and 
tolerability of young FFP transfusion, but other 
unknown adverse reactions may mirror those 
experienced by patients in critical care units receiving 
transfusions such as febrile nonhemolytic transfusion 
reactions, anaphylactic reactions, transfusion-related 
acute lung injury (TRALI), transfusion-associated 
circulatory overload (TACO), etc [5, 15]. Thorough 
medical screening of both donors and recipients 
especially for cardiac and renal function are necessary 
to mitigate such reactions [15]. In addition, dosing 
regimens for exercise plasma transfusion are not 
known. The Alzheimer Symptom Amelioration study 
showed that weekly infusions of approximately 250 
mL of plasma were well-tolerated by elderly 
Alzheimer’s patients but further studies will be 
needed to uncover the optimal infusion protocol [5]. 

In summary, the putative molecular mechanisms 
that underlie the therapeutic effects of 
exercise-induced plasma transfusion therapy provide 
a foundation for their potential translational use in 
cancer, cardiovascular diseases, and 
neurodegenerative diseases. Furthermore, there is an 
opportunity to translate the benefits of 
exercise-induced plasma for bedridden or paralyzed 
patients who are unable or intolerant to exercise 
training. In conclusion, we believe it is time for 
early-phase clinical trials to test exercise-conditioned 
plasma for different chronic diseases. We envision a 
future where this therapy could enter mainstream 
medicine and call for collaborators to discuss 
multi-country clinical trials to explore this exciting 
space. 
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