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Abstract

The interplay between cellular metabolism and innate immunity critically shapes the body’s ability to fight
infections, repair tissue, and manage stress. Metabolic reprogramming not only drives innate immune
activation but also regulates the resolution of inflammation. Phenotypes of immune cell are closely linked
to metabolic shifts that adapt to varying energy demands. However, the precise relationship between
perturbations in the cellular respiratory-metabolic axis and the inflammatory response remains a critical
field of investigation. In depth understanding of key metabolic pathways, such as glycolysis, NADPH
oxidase activity, mitochondrial ROS production, TCA cycle metabolites, and cGAS-STING/AIM2
inflammasome activation, is essential to unravel the complexities of innate immunity. This article
highlights the central role of metabolic reprogramming mainly in innate immunity and explores its
potential as a therapeutic target for modulating inflammatory response.
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1. Introduction

Innate immunity serves as the first line of
defense against pathogen infection and tissue injury,
mobilizing a suite of immune cells, such as dendritic
cells, macrophages, and T cells, to engage in a rapid,
non-specific response. These cells experience
profound transcriptional and translational
modifications, with a concurrent metabolic shift to
sustain the immediate demands of the immune
response. Typically, proinflammatory cells shift from
oxidative phosphorylation (OXPHOS) to glycolysis, a
metabolic alteration that provides both energy and
biosynthetic precursors. The generation of reactive
oxygen species (ROS) and mitochondrial signaling
pathways are crucial determinants of the
inflammatory response and immune cell function.
Sustained activation of the innate immune response
result in precipitate deleterious conditions, such as

cytokine storms or autoimmune diseases [1].
Targeting metabolic reprogramming offers a
promising strategy for developing novel therapies for
inflammatory and autoimmune diseases. This review
delineates the intricate steps and pivotal molecules in
metabolic programming and sheds light on emerging
therapeutic strategies aimed at their regulation.

2. Cytoplasmic Metabolic Signaling Hubs
2.1. Glycolysis Enzymes

Under normoxic conditions, the Warburg effect
induces a switch of metabolism from OXPHOS to
glycolysis, favoring aerobic glycolysis for ATP
generation. Immune cells resort to Warburg
metabolism upon encountering inflammatory stimuli,
a strategy that underpins their resistance to
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lactate-mediated suppression and supports cellular
proliferation [2]. Dendritic cells, for instance, augment
glucose consumption and engage in Warburg
metabolism following Toll-like receptor (TLR)
activation [3]. Glycolysis and the pentose pathway
become the predominant source for ATP production
in T cells and M1 macrophages, sidelining the
tricarboxylic acid (TCA) cycle [4]. The accumulation
of lactic acid not only aids in restoring metabolic
equilibrium but also can induce a phenotypic switch
in immune cells towards a quiescent state, which
marks the cessation of the immune response [5].
Glycolysis is an intricately controlled sequence
of biochemical reactions (Figure 1). The rate of cellular
glucose absorption is largely governed by glucose
transporters (GLUT). Activation of T cells necessitates
a prompt and robust upregulation of GLUT1, a
requirement not shared by quiescent peripheral T
cells for their survival [6]. During Streptococcus
pneumoniage infection, the AIM2 inflammasome is
triggered by GLUTI1-mediated glycolysis, thereby
intensifying pulmonary fibrosis [7]. Sepsis-induced
Warburg effect via GLUT1 can lead to the apoptotic
demise of CD4* T cells, precipitating a collapse of
immune function [8]. In models of encephalomyelitis
and autoimmune colitis, glucose uptake via GLUT3

modulates glucose oxidation and ATP-citrate
lyase-dependent acetyl-CoA synthesis in the
mitochondria, influencing the epigenetic

reprogramming of inflammatory genes in T helper

(Tn)17 cells [9].

The enzymatic transformation of glucose into
glucose-6-phosphate, catalyzed by hexokinase (HK) 1
to 4, marks the onset of aerobic glycolysis. The
dissociation of HKI1 from mitochondria and its
binding to S100A8/A9 promotes iNOS-dependent
nitrosylation and GAPDH inactivation. This redirects
glycolytic flux to the pentose phosphate pathway and
enhances nitric oxide signaling. This metabolic shift
leads to oxidative stress and low-grade chronic
inflammation that contribute to tissue damage in
diabetic neuropathy and aging [10]. In LPS-primed
macrophages, HK1 detects cytosolic
N-acetylglucosamine, a peptidoglycan metabolite
which triggers the dissociation of HK1 from the
mitochondria. This inhibits enzyme activity of HK1
and leads to elevated ROS, which act as Signal 2.
Signal 2 then drives the assembly of the NOD-like
receptor family pyrin domain containing 3 (NLRP3)
inflammasome, resulting in inflammation [11]. HK2
expression alteration is notably significant in
activated T cells. The inhibition of HK2 by bacterial
peptidoglycan-derived N-acetyl glucosamine results
in its detachment from the mitochondrial outer
membrane and the subsequent assembly of the
NLRP3 inflammasome. Interfering with glycolysis via
the addition of glucose-6-phosphate, the enzymatic
product of HK2, nullifies its pattern recognition
receptor function [11].
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Figure 1. The enzymes involved in glycolysis play important role in innate immune response, either directly or indirectly. Certain compounds have anti-inflammatory effects by
inhibiting enzyme activity or altering enzyme conformation. Red arrows indicate pro-inflammatory effects; blue arrows indicate anti-inflammatory effects.
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Glucokinase, a hexokinase isozyme with lower
affinity for glucose, converts glucose to
glucose-6-phosphate primarily in hepatocytes and
pancreatic  beta cells. The initiation  of
glucokinase-mediated  glycolysis leads to its
interaction with actin, which promotes cytoskeletal
reorganization and the migration of T regulatory cells.
This migratory response is driven by glucokinase
expression upregulation via the phosphoinositide
3-kinase (PI3K)-mammalian target of rapamycin
(mTOR) complex 2 signaling axis [12].

The third step of glycolysis is catalyzed by
phosphofructokinase-2 (PFK-2), which facilitates
conversion of fructose-6-phosphate to
fructose-2,6-bisphosphate (F2,6BP). PFK-1 activity is
allosterically upregulated by F2,6BP [13], which is
synthesized from fructose-6-phosphate by
fructose-6-phosphate-2-kinase (PFK2/PFKFB3).
Genetic variants such as rs646564 in the PFKFB3 gene
reduce glycolytic ATP production, resulting in
impaired generation of ROS outburst. This leads to
defective phagocytosis and poor fungal clearance in
human macrophages [14].

Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) undertakes the sixth step of glycolysis to
catalyze the oxidation of glyceraldehyde-3-phosphate
to 1,3-biphosphoglycerate. Malonylation at Lys213 on
GAPDH disrupts its interaction with AU-rich mRNA
elements, such as TNFa, resulting in the release of
these transcripts for translation and the subsequent
activation of pro-inflammatory signaling pathways.
Concurrently, this modification impairs GAPDH's
glycolytic enzymatic activity, and reprograms
glycolysis to meet the energy demands of the
macrophages during inflammation [15]. GAPDH also
plays arole in T cell activation and glycolysis, with its
direct interaction with the AU-rich element in the 3’
untranslated region on interferon (IFN)-y mRNA [16].

Pyruvate kinase isoezymes M2 (PKM2)
orchestrates the final and rate-limiting step of
glycolysis by catalyzing the transformation of
phosphoenolpyruvate to pyruvate when in its active
tetrameric state. In its dimeric configuration, PKM2
translocate to the nucleus to activate transcription
factor 2, thereby enhancing LPS-induced pyroptosis in
microglia [17]. Additionally, when associated with
HIF-la in the nucleus, PKM2 initiates the
transcription of interleukin (IL)-1p, inhibits glycolysis
and shifts macrophages towards the M2 phenotype
under LPS and Salmonella typhimurium exposure [18].
PKM2-mediated glycolysis also facilitates the
phosphorylation of eukaryotic translation initiation
factor 2-alpha kinase 2, activating the AIM2 and
NLRP3 inflammasomes in macrophages, a critical
process in lethal endotoxemia and polymicrobial

sepsis [19]. Pharmacological intervention that
activates PKM2 to its tetrameric state impedes its
nuclear translocation and subsequent transcription of
pro-inflammatory genes. The allosteric PKM2
activator TEPP-46 mitigates CD4* T cell-driven
autoimmune and inflammatory responses in
autoimmune encephalomyelitis models [20]. In
contrast, sulfenylation of PKM2 impedes its
tetramerization and reduces its enzymatic activity,
which in turn augments glycolytic flux and the
accumulation of harmful glucose metabolites [21].

Lactate dehydrogenase A (LDHA) catalyzes the
conversion of pyruvate to lactate, a process that
succeeds aerobic glycolysis. Elevated LDHA
expression favors aerobic glycolysis, sustaining
acetyl-coenzyme A concentrations necessary for
histone acetylation, which in turn modulates
epigenetic control of IFN-y production in T cells upon
activation. A deficiency in LDHA, however, can lead
to PI3K-mediated dephosphorylation of Akt, reducing
T cell-mediated immunity in mice challenged with
bacterium Listeria monocytogenes [22].

2.2. Nicotinamide Adenine Dinucleotide
Phosphate (NADPH) Oxidase

The NADPH oxidase (NOX) family, along with
the mitochondrial electron transport chain (ETC), are
primary sources of reactive oxygen species (ROS) and
directly generate ROS such as superoxide and
hydrogen peroxide. To date, the NOX family has been
expands to encompass seven isoforms, NOX1 to
NOX5, along with dual oxidase (DUOX)1-2, each with
unique tissue distribution and physiological functions
[23].

The NOX2 complex, along with its regulatory
subunits p40phox, pd7rhox and p67rhex, was initially
characterized as the primary component of the
phagocyte oxidative burst [24]. Upon infection, these
regulatory subunits translocate to the membrane, and
form the active oxidase complex together with
gp91rhox and p22prhox. NOX2 facilitates the generation
of superoxide via a biphasic electron transfer process,
essential for pathogen eradication [24]. This activation
promotes a significant upsurge in both OXPHOS and
glycolysis [24]. A missense mutation in the neutrophil
cytosolic factor 2 gene, which encodes p67rhox, has
been linked to early-onset IBD [25]. Conversely, a
deficiency in NOX2 predisposes individuals to
autoimmunity and elevate systemic lupus
erythematosus risk [26]. On the other hand, hyper
activation of NOX2 can lead to oxidative stress,
contributing to chronic inflammation and tissue
damage. Targeted reversible inhibitors that hinder
p47rhox and p22rhox interactions effectively mitigate
NOX2-induced oxidative stress [27].
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Figure 2. In the T cell activation cascade, the T cell receptor (TCR), along with
co-stimulatory and co-receptor molecules like CD28, IL2R, and IL7R, orchestrates
activation via the PI3K-Akt-cMyc axis. In contrast, programmed cell death protein 1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) serve as
inhibitory checkpoints, dampening T cell activation by modulating the PI3K-Akt
pathway. The diagrammatic representation employs red arrows to denote the
pathways promoting T cell activation, while blue arrows indicate the pathways
conferring inhibitory signals that antagonize activation.

Compounds like LDC7559 and its more
efficacious derivative, NA-11, target the AMP/ADP
allosteric site on phosphofructokinase-1 liver type
(PFKL). This interaction inhibits glycolysis and the
subsequent pentose phosphate pathway, diminishing
the NOX2-dependent oxidative burst and the defense
capability of neutrophils, thereby curtailing tissue
damage [28]. Additionally, during Staphylococcus
aureus infection, NOX2 generates ROS, which
alkalinizes phagosomes by consuming protons during
the conversion of oxygen to superoxide (O;). This
counteracts the acidifying activity of the V-ATPase
proton pump. However, caspase-1 subsequently
cleaves subunits of the NOX2 complex, reduces ROS
production and  allowing  V-ATPase-driven
acidification to proceed. This enhances the killing of
Gram-positive bacteria via lysosomal enzymes [29].

Inhibition of NOX4 bolsters the endothelial cell
barrier in sepsis and mitigate acute lung injury [30].
GKT137831, a NOX4 inhibitor, is undergoing clinical
evaluation for idiopathic pulmonary fibrosis (Clinical
trial No. NCT03865927), type 2 diabetes
(NCT02010242), and primary biliary cholangitis
(NCT03226067). While ablation of NOX4 enhances
liver regeneration in mice [31], yet it appears to confer

protection against tissue damage due to fibrogensis in
chronic intestinal inflammation [32]. Given NOX4's
multifaceted roles in different disease states,
pharmacological targeting requires precise tailoring to
minimize off-target effects.

NOXS5, an oxidase primarily expressed during
monocytes differentiation to dendritic cells and
implicated in vascular remodeling and calcification
[33]. NOX5 expression in podocytes is linked to the
heightened ROS and pro-inflammatory cytokine
production via activation of IL-1R-associated kinases
(IRAK)-1, IRAK-4 [34], and protein kinase C-a
signaling [35]. The broad-spectrum NOX inhibitor
APX-115 enhances pancreatic beta-cell functionality
and mitigates diabetic nephropathy in NOX5
overexpressing transgenic mice [36].

DUOX1 and DUOX?2, initially identified in the
thyroid, are crucial for thyroid hormone biosynthesis.
In the lungs, IL-1p and ROS, generated by DUOX1,
constitute a unified epithelial response to microbial
infections [37]. DUOX2’s primary function is to
protect against pathogenic gut microbiota by
producing hydrogen peroxide [38]. Notably, a
monoallelic exonic variant of DUOX2 correlates with
very early-onset IBD [39], and mutations in DUOX2
are associated with increased colonic IL-17C levels
and risk of IBD [40].

2.3. Hypoxia-Inducing Factor-1a (HIF-1a)

HIF-1a transcription is principally regulated by
nuclear factor kappa B (NF-xB) pathways in response
to hypoxia [41]. The stability and subsequent nuclear
translocation of HIF-la are crucial in redirecting
cellular metabolism towards glycolysis. During
neutrophil-mediated oxidative burst, the glycerol
3-phosphate pathway is essential in preserving
mitochondrial integrity and supporting glycolysis,
thus facilitating HIF-1a stabilization [42]. The use of
FG-4592 to stabilize HIF-1a diminishes both glycolytic
metabolites and cytokine production in alveolar
macrophages during acute lung injury [43].
Conversely, HIF-la genetic ablation reduces
glycolysis and curtails pro-inflammatory mediator
production in macrophages, which has implications
in systemic lupus erythematosus [44]. Additionally,
Wnt ligand stimulation enhances the interaction
between P-catenin and HIF-1a, leading to a surge in
HIF-1a levels and a subsequent pro-inflammatory
response in macrophages from patients with
COVID-19 [45].

2.4. PI3K-Akt Signaling in Metabolic
Regulation and Immune Cell Activation

The activation of naive T cells is precipitated by
the engagement of T cell receptor (TCR) complexes
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with co-stimulatory signals such as CD28, IL-2, and
IL-7. The TCR complex influences the Myc pathway
and the PI3K-Akt signaling signaling cascade [46].
Myc is indispensable for the metabolic
reprogramming of T cells, with its absence impeding
the induction of glycolytic flux upon T cell activation.
Proteins associated with glycolysis and oxidative
metabolism are markedly increased during the initial
activation of naive T cells [47]. For example, GLUT1
expression in activated T cells, regulated by PI3K-Akt
signaling, corresponds with an adaptive increase in
glucose metabolism. The reactivation of memory T
cells similarly relies on CD28-mediated PI3K-Akt
signaling for GLUT1 expression, which is critical for
their metabolic demands [48].

3. Mitochondrial Metabolic Signaling
Hubs

3.1. Mitochondria Generated ROS

Mitochondria act as the principal loci for aerobic
respiration and serve as the energy biosynthesis
powerhouses within eukaryotic cells. The ETC hosts
the OXPHOS process that facilitates ATP synthesis,
the predominant energy molecule. Electron transit
through the ETC establishes a proton gradient across
the inner mitochondrial membrane, which, upon
reacting with oxygen, generates ROS within the ETC.

L,v @—AHZOZ

NOX2 Complex

Electrons from nicotinamide adenine
dinucleotide (NADH) enter the ETC at mitochondrial
complex I. An elevated NADH/NAD* ratio within
the mitochondrial matrix allows for the interaction of
molecular oxygen  with  reduced flavin
mononucleotide (FMN), resulting in the production of
the superoxide anion (O), which is liberated into the
mitochondrial matrix. Subsequently, the reduction of
ubiquinone and alterations in mitochondrial
membrane proton concentration induce a reverse
electron transport chain (RET), driving electrons back
towards complex I and fostering additional Oy
generation [49]. Complex 1 impairment impairs
NADPH production and enhances the inflammatory
response due to ROS accumulation [50].

Complex III is another significant contributor to
mitochondrial ROS production. The O2 generated by
complex Il primarily enters the inner mitochondrial
membrane space, while the MO, formed
post-disproportionation permeates the matrix [51]. A
deficit in complex III function leads to heightened
DNA methylation and suppresses the expression of
genes critical for the immunosuppressive function of
regulatory T (Treg) cells without compromising Treg
cell proliferation or viability [52]. ROS originating
from complex III also precipitate the depletion of
NAD* levels and intensify DNA damage, processes
crucial” for macrophage activation [53].
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Figure 3. Mitochondria and NOX2 complexes are responsible for the generation and release of ROS into the cytoplasm. Mitochondrial Complexes | to lll together with NOX2

complex generates O2-, a precursor to a multitude of ROS.
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When both complexes I and complex III are
inhibited, complex II becomes the predominant
source of ROS [54]. Upon LPS stimulation,
macrophages exhibit an increase in mitochondrial
succinic acid oxidation and membrane potential due
to complex II-mediated elevated mitochondrial ROS
production. Targeting succinate dehydrogenase
within complex II can mitigate ROS generation,
dampen the macrophage inflammatory response, and
reduce LPS-induced lethality in mice [55]. Itaconate, a
metabolite produced by activated macrophages, acts
as an inhibitor of succinate oxidation at complex II,
modulating macrophage metabolism and attenuating
inflammation in models of ischemia-reperfusion
injury in Irgl”/- mice [56]. Cardiolipin biogenesis
impedes the assembly of complex II, triggering
lysosome-mediated degradation of this complex
following LPS exposure in macrophages [57].

Mitochondrial-derived ROS play a pivotal role in
modulating the innate immune response [58]. They
facilitate the relocation of NLRP3 to the
mitochondria-associated ER membrane, where it
attracts both apoptosis-associated speck-like protein
containing a CARD (ASC) and pro-caspase-1, leading
to inflammasome activation. Mitochondrial ROS
(mtROS) trigger cleavage and oligomerization of the
N-terminal domain of gasdermin D, enabling its
insertion into the mitochondrial membrane to form
pores. These pores amplify mtROS release, which
then activates the RIPK1/RIPK3/MLKL necroptotic
pathway and drive necroptotic cell death during
Pseudomonas entomophila infection [58]. Excessive
mtROS stemming from dysfunctional mitochondria
instigate the assembly of the NLRP3 inflammasome.
TLR7/8 agonists, such as imiquimod and CL097,
impede the activity of quinone oxidoreductases
NQO?2 and complex I of the mitochondria, thereby
heightening intracellular ROS triggering NLRP3
inflammasome activation independent of K* efflux
[59]. Conversely, curtailing mitochondrial ATP
synthesis and DNA replication can avert NLRP3
inflammasome initiation in alveolar macrophages in
acute respiratory distress syndrome induced by LPS
or SARS-CoV-2 infection [60]. While obstructing the
mitochondrial ETC can diminish the NLRP3-driven
inflammatory cascade, the mitochondrial metabolite
phosphocreatine activates the NLRP3 inflammasome
in an ATP-dependent manner, irrespective of ROS
generation [61].

3.2. Mitochondrial Dynamics in Immune Cell
Fate and Inflammation

Mitochondrial dynamics is one of the key
determent factors in metabolic programming and T
cell destiny. Mitochondrial fusion proteins like OPA1

enhance OXPHOS in memory T cells by promoting
fused mitochondrial networks and remodeling cristae
structure, which optimizes ETC efficiency. This tight
ETC coupling sustains high ATP production,
supporting the metabolic demands and longevity of
memory T cells [62].

Mitophagy, a specialized autophagic
mechanism, selectively eliminates malfunctioning or
surplus mitochondria and is instrumental in
modulating inflammatory responses. FUNDCI1, a
receptor  essential for mitophagy, ensures
mitochondrial quality control under normal
conditions, and its disruption worsens diet-triggered
obesity and metabolic dysfunction [63]. Mitophagy
prevents NLRC4 activation during Pseudomonas
aeruginosa infection by removing mitochondria
damaged by the type IIl secretion system (T3SS),
thereby reducing mtROS and oxidized mtDNA
release. This blocks the cytosolic accumulation of
oxidized mtDNA, which is required for NLRC4
inflammasome  oligomerization and activation,
excessive ROS generation, mitochondrial DNA
(mtDNA) release, and subsequent activation of the
NLRC4 inflammasome in macrophages [64]. In
intestinal macrophages, the deletion of IL-10 or its
receptor prolongs mTOR pathway signaling,
exacerbating inflammasome activity and intensifying
intestinal inflammation [65].

The strategic induction of mitophagy through
small-molecule agents presents great potential in
regulating inflammatory response. Compounds such
as rapamycin and resveratrol mitigate NLRC4
inflammasome activation by facilitating mitophagy,
thereby clearing damaged mitochondria in mouse
bone marrow-derived macrophages (BMDMs) [64].
Similarly, andrographolide, the main active substance
first isolated from Andrographis paniculata, obstructs
the advancement of colitis and associated cancers by
inhibiting the NLRP3 inflammasome via mitophagy
in mouse models [66].

3.3. TCA Cycle Metabolites

Mitochondrial metabolism plays a pivotal role in
immune regulation, particularly through the
tricarboxylic acid (TCA) cycle. The TCA cycle, or
termed as the Krebs cycle, represents a fundamental
process in biosynthesis and cellular energy
production. In immune cells, intermediates of the
TCA cycle serve a dual function: they are vital for
ATP generation and act as signaling molecules that
influence immune responses. For example, a low
a-ketoglutarate /succinate ratio leads to
proinflammatory state of macrophages, whereas a
high a-ketoglutarate/succinate ratio facilitates the
tissue repair phenotype of macrophages [67]. The
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inhibition of succinate oxidation by dimethyl
malonate, in turn, drives the proinflammatory
phenotype of macrophages [55].

One noteworthy endogenous metabolite derived
from the TCA cycle-derived is itaconate, which is

generated  through the decarboxylation  of
cis-aconitate. Itaconate suppresses inflammatory
responses by inhibiting activity of succinate

dehydrogenase [56, 68] and to interact directly with
Cys151, 257, 288, 273 and 297 on KEAP1 [69]. The
covalent binding of itaconate and KEAP1 then enables
increased expression of nuclear factor erythroid
2-related factor 2 (Nrf2) downstream anti-oxidant and
anti-inflammatory genes [69]. Moreover, the cell
permeable derivative of itaconate, 4-octyl itaconate,
offers protection against lethality and systemic
inflammation induced by LPS [69]. Treatment with
glucocorticoids ~ facilitates the interaction of
glucocorticoid receptor with pyruvate dehydrogenase
complex, and then elevates the TCA cycle-dependent
production of itaconate and interfere with the
production of proinflammatory cytokines [70]. This
illustrates how metabolic pathways can directly
influence immune cell behavior and responses,
emphasizing the complex interconnection between
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metabolism and immunity.

3.4. Mitochondrial DNA (mtDNA) Triggered
Inflammatory Response

mtDNA, positioned in proximity to the ETC, acts
as a principal source of mitochondrial reactive oxygen
species (mtROS). mtROS, such as hydroxyl radicals,
oxidize mtDNA, generating strand breaks and
8-oxoguanine adducts that structurally mimic
pathogen-derived DNA. When released into the
cytoplasm, oxidized mtDNA is recognized by
cGAS/STING as a "non-self" danger signal and leads
to subsequent activation of innate immune pathways
and conferring immunogenicity [71]. mtDNA is rich
in hypomethylated CpG motifs, identifiable by
pattern  recognition  receptors  (PRRs) like
cGAS-stimulator of interferon genes (STING), TLR9,
and the AIM2 inflammasome [72, 73]. Experimental
intra-articular injection of mtDNA in mice provokes a
pro-inflammatory response [74]. Mitochondrial ROS
can also impair mtDNA synthesis by diminishing the
level of mitochondrial transcription factor A,
intensifying the severity of ischemic acute kidney
injury [75].

Cytoplasm
NPV B BDP VDT
Nucleus

Inflammatory Cytokines

Figure 4. cGAS is activated by mtDNA, thereby catalyzing the formation of cGAMP. cGAMP binds to STING and promotes its transfer from the endoplasmic reticulum to the

Golgi apparatus, subsequently activating downstream inflammatory pathways.
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Figure 5. The release of mtDNA from damaged mitochondria into the cytoplasm stimulates the activation of AIM2 inflammasome. Caspase-1 subsequently cleaves gasdermin
D to generate N-terminal fragments that assemble into membrane pores, while also maturing pro-IL-1B and pro-IL-18 for release through these channels.

Cells expel defective mitochondria through
mitophagy under normal conditions [76]. However,
cells prioritize aerobic glycolysis over OXPHOS
during immune activation, which leads to a surge in
mtROS levels. This increase can induce mitochondrial
damage and the subsequent mtDNA release, which
then amplifies inflammatory responses [77].

3.4.1. cGAS-STING

The cGAS-STING (cyclic GMP-AMP
synthase-stimulator of interferon genes) is a
cytoplasmic DNA-sensing pathway that triggered by
type 1 IFN production [78]. Upon binding to
double-stranded DNA (dsDNA), cGAS utilizes the
formation of cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP) using ATP and
GTP, which subsequently binds and activates STING
[79]. Dysregulated cGAS-STING signaling links to a
spectrum of inflammatory diseases [80]. Therapeutic
intervention targeting the cGAS-STING pathway,
such as the inhibition of its substrate or catalytic sites,
could potentially ameliorate autoimmune disorders
[81]. STING antagonists can act by occupying its cyclic
dinucleotide binding site [82] or by binding covalently
to cysteine residue 91 to prevent STING
palmitoylation, an  essential  posttranslational

modification for its activity [83].

3.4.2. AIM2 Inflammasome

The AIM2 (absent in melanoma 2)
inflammasome functions as a sensor for cytosolic
double-stranded DNA that activates inflammatory
caspases, engaging the adaptor protein ASC and
procaspase-1 to facilitate its assembly. This complex
initiates the cleavage and subsequent translocation of
gasdermin D to cell membrane [84]. The activation of
the AIM2 inflammasome is intricately linked to the
metabolic reprogramming of immune cells. For
example, in septic mice induced by LPS, PKM2-driven
glycolysis leads to the phosphorylation of eukaryotic
translation initiation factor 2-a kinase 2, which
mediates the activation of NLRP3 and AIM2
inflammasome [19]. Heightened mtROS levels
prompts the assembly of the AIM2 inflammasome,
thus the cleavage of procaspase-l1 and subsequent
cleavage of Parkin, a negative regulator of mitophagy,
thereby impeding mtROS clearance and enhancing
mitochondrial damage [85]. Additionally, AIM2

inflaimmasome is suppressed in LPS-primed
macrophages when the synthesis of
25-hydroxycholesterol is upregulated through

cholesterol biosynthesis [86].
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The role of the AIM2 inflammasome is
context-dependent, varying with cell type and
disease. In systemic lupus erythematosus, AIM2
expression is markedly upregulated in leukocytes and
macrophages, though not in kidney tissue [87].
Conversely, activation of the AIM2 inflammasome
aggravates atherosclerosis in individuals with clonal
hematopoiesis [88]. In contrast, Akt interacts with
AIM2 to inhibit the Akt/mTOR/Myc, thus promotes
lipid oxidation in mitochondria. This enhances the
stability of Tig cells in response to inflammatory
stimuli, thereby limiting the development of
autoimmunity  in  experimental = autoimmune
encephalomyelitis [89].

4. Potential Metabolic Regulators

For numerous immunologists and
pharmacologists, the most urgent inquiry pertains to
the potential for introducing a regulatory layer to
oversee cellular metabolic programming, with the
objective of controlling innate immune responses. The
regulation of cellular metabolic programming has the
potential to be a highly efficacious therapeutic
intervention, as well as to provide crucial insights into
the fundamental relationship between metabolic
alterations and the signaling control of innate
immunity.

4.1. Glycolysis Inhibitors

Small molecules can modulate glycolysis at
various  enzymatic  steps. The  compound
2-deoxyglucose (2-DG), a structural analog of
glucose, competitively inhibits phosphoglucose
isomerase, thereby curbing the formation of
glucose-6-phosphate, a critical early intermediate in
glycolysis [90]. The use of 2-DG and the fatty acid
synthase inhibitor C75 has been shown to forestall the
activation of DCs by disrupting the glycolysis-driven
de novo synthesis of fatty acids [91]. Therapeutically,
2-DG administration attenuates oxidative stress and
the systemic inflammatory response in murine
models of acute lung injury and septic shock-induced
kidney injury [92]. Furthermore, a recent Phase II
clinical trial has reported that 2-DG, administered at a
dose of 90 mg/kg/day in conjunction with the
standard of care, provides additional benefit to
patients with COVID-19, compared to the standard
treatment alone [93].

Compound 3-(3-pyridinyl)-1-(4-pyridinyl)-2-
propen-1-one, a potent inhibitor of PFKFB3, mitigates
endothelial inflammation in LPS-induced acute lung
injury mice [94]. The cell-permeable itaconate
derivative 4-octyl itaconate covalently modifies the
Cys22 residue on GAPDH to inhibit its glycolytic
activity, thus resulting in the amelioration of the

inflammatory response within macrophages [95].

Capsaicin interacts directly with Cys424 on
PKM2, thereby inhibiting the enzyme’s facilitation of
the Warburg effect. Treatment with capsaicin, at a
dosage of 1 mg/kg, mitigates systemic inflammation
and multiple organ dysfunction in a murine model of
septic shock induced by LPS [96]. The modulation of
PKM2-mediated glycolytic metabolism through
agents such as iminostilbene or shikonin associates
with reduced inflammatory response in macrophages
during myocardial ischemia-reperfusion injury [97,
98], and in Ty17 cells in the context of non-alcoholic
fatty liver disease [99]. In collagen-induced arthritis
mice, Panax notoginseng saponins obstructs STAT3
phosphorylation by preventing nuclear translocation
of PKM2, which in turn decreases differentiation of
Twl7 cells [100]. Conversely, enhancing PKM2
metabolic function with the allosteric activator
TEPP-46 restricts Twl7 cells maturation, thereby
potentially reducing autoimmunity in models of
experimental autoimmune encephalomyelitis and
multiple  sclerosis  [20]. DASA-58, another
well-characterized PKM2 activator [18], impedes
glycolysis and the inflammatory response in
macrophages triggered by LPS and follistatin-like
protein  [101].  Additionally, a  series of
coxylanolactone derivatives have been synthesized,
among which the compound D5 is identified as a
PKM2 activator. D5 inhibits Th17 cell differentiation,
restoring the Tn17/Treg cell balance and ameliorating
symptoms of colitis in mice models induced by
sodium glucan sulfate and 2,4,6-tritrobenzene sulfonic
acid [102].

4.2. NADPH Oxidase Inhibitors

NADPH oxidase is pivotal in catalyzing the
reduction of oxygen to superoxide anion, a reaction
essential for the oxidative bursts that are a key
component of the immune defense system [24].
Consequently, the development of NADPH oxidase
inhibitors has become an area of intense research
focus.

Apocynin, first isolated from the root of
Apocynum cannabinum in 1908 and subsequently from
Picrorhiz kurroa in 1971 , was later identified as a
selective inhibitor of NADPH oxidase [103]. Apocynin
alleviates corneal injury and inflammatory response
in corneal neovascularization by its ROS scavenging
activity [104]. Interestingly, apocynin also diminished
neutrophil survival by modulating ERK1/2
phosphorylation induced by granulocyte-macrophage
colony-stimulating factor (GM-CSF), independent of
its inhibitory activity on NADPH oxidase [105]. The
small molecule LDC7559 and its derivative NA-11
target PFKL, and selectively attenuate
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NOX-2-dependent
moderating excessive
neutrophils [28].

The NOX1/4 inhibitor GKT137831, also known
as setanaxib, potentiates immune activity in CD8* T
cells, enhancing their infiltration into
cancer-associated  fibroblasts and  potentially
reversing resistance to programmed cell death protein
1 (PD-1)/PD-ligand 1 immunotherapy [106].
GKT137831 is currently undergoing Phase IIb/IIl
clinical trials for primary biliary cholangitis and
hepatitis steatosis, as well as a Phase I clinical trial for
squamous cell carcinoma of the head and neck
(Clinical trial No. NCT05014672, NCT05323656).

The NOX5 specific inhibitor ML090 significantly
reduces edema and cerebral induced cerebral
ischemic injury when administered as a pretreatment,
suggesting its potential as a preventative strategy in
combination with thrombolytic drugs [107].

4.3. ROS Scavengers

The strategic removal of surplus mtROS relies on
the development of specialized chemical scavengers.
MitoQ, a ubiquinone-derived compound conjugated
with a triphenylphosphonium cation, is a lipophilic
cation engineered to cross biological membranes and
accumulate in the mitochondrial inner membrane,
leveraging the mitochondrial membrane potential
[108]. Clinical studies have demonstrated the efficacy
of MitoQ in a range of conditions, including
Parkinson's disease [109], neuroinflammation [110],
mtDNA damage associated with high-intensity
exercise [111], and the enhancement of vascular
function in healthy older adults [112].

Tiron, or sodium 4,5-dihydroxybenzene-1,3-
disulfonate, represents another mitochondria-
targeted antioxidant. It has shown promise in
improving airway inflammation in a chronic asthma
model in mice, displaying effectiveness comparable to
the clinically prescribed corticosteroid,
dexamethasone [113]. Moreover, Tiron inhibits the
activation of the NLRP3 inflammasome in
endothelin-1-induced models of erectile dysfunction
[114], and offers superior protection against oxidative
damage from hydroperoxide and UV radiation in the
315-400 nm range in human skin fibroblasts when
compared to MitoQ [115].

Another notable compound is mito2HOBA
((4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphe
nylphosphonium), a mitochondria-targeted scavenger
synthesized by conjugating 2-hydroxybenzylamine
with the lipophilic cation triphenylphosphonium.
Mito2HOBA  significantly = diminishes systemic
inflammation in LPS-induced septic shock in mice
[116].

oxidative  bursts,
inflammation

effectively
in human

Augmentation with key NAD* precursors, such
as nicotinamide riboside (NR) and nicotinamide
mononucleotide (NMN), may activate enzymes
critical for NAD biosynthesis. Deficits in NMN and
NAD* correlate with metabolic impairments and the
enhanced presence of CD38 in immune cells, a
phenomenon often observed with aging [117].
Long-term supplementation with NMN and NR is
linked to a reduction in age-related inflammation and
oxidative stress in murine models [117]. Clinical trials
reveal that NMN can substantially improve insulin
sensitivity and signaling in prediabetic women
following a daily intake of 250 mg for a duration as
brief as ten weeks [118].

However, it is imperative to consider treatment
duration, dosing regimens, and potential long-term
adverse effects. Current human studies typically use
doses of up to 500 mg in the above mentioned studies,
which are significantly lower than the doses used in
mouse models, where approximately 300 mg per
kilogram is common - equivalent to approximately
225 g for a 75 kg individual. This striking difference
underscores the need for cautious dose extrapolation
between species. Experts agree that further research
using high-throughput methods is essential to
elucidate the effects of NAD* and its precursors on the
epigenome, transcriptome, proteome, and
metabolome. In addition, long-term administration of
NMN or nicotinamide riboside and its effects on
healthy individuals warrant rigorous investigation to
ensure safety and efficacy.

4.4. cGAS Inhibitors

The inhibition of cGAS focuses on attenuating its
catalytic function. PF-06928215, the inaugural cGAS
inhibitor, was discovered via a fluorescence
polarization assay, exhibits high affinity (kp=200 nM)
and potency [81]. Enhanced derivatives, including
compounds 18, S2, and S3, target the catalytic domain
of cGAS and demonstrate superior inhibition, as
confirmed through a pyrophosphate (PPj-coupled
assay and computational screening [119].

Another class of cGAS inhibitors emerged from a
screen for compounds that hinder synthesis of
cGAMP. RU.521, notable for its potency, binds to
Arg364 and Tyr421 of cGAS, engaging the phthalide
ring’s aldehyde group and forming hydrogen bonds
with Gly290 and Lys350 of murine cGAS. Ru.521
uniquely attenuates dsDNA-stimulated type I IFN
expression in BMDMs isolated from mice with
Aicardi-Goutieres syndrome [120].

Lama et al. introduced the small molecules G108
and G150 as human cGAS inhibitors, leveraging an
ATP-dependent, luminescence-based high-
throughput screen. These compounds target the cGAS
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active site, selectively reducing dsDNA-induced IFN
response in human THP-1 cells and primary
macrophages [121]. Similarly, Cu-32, Cu-76, and
related molecules disrupt the dimer interface of
human cGAS, specifically targeting cytosolic
DNA-triggered, but not RNA-induced, IFN response
[122].

Beyond these targeted molecules, certain
approved drugs also exhibit inhibition to cGAS.
Antimalarial agents, such as hydroxychloroquine
sulfate, chloroquine, and quinine, along with the
aminoacridine derivative X6, diminish IFN-
production by blocking ¢GAS-dsDNA interactions
[123, 124]. Suramin, an established therapy for
parasitic diseases, also inhibits cGAS activity without
impacting TLR1/TLR2 or TLR4 pathways [125, 126].
Currently, suramin is undergoing Phase II trials for
acute kidney injury (clinical trial No. NCT04496596),
autism, and several types of cancer [127, 128].
Additionally, aspirin acetylates cGAS at Lys384,
Lys394, or Lys414, and its administration at 50 mg/kg
mitigates autoimmunity in models of
Aicardi-Goutieres syndrome and in patient-derived
peripheral blood mononuclear cells [129].

4.5. STING Agonists

Targeting the palmitoylation of STING offers
therapeutic promise [130]. Nitrofuran derivatives
C-170, C-171, C-176, C-178, and the indoles derivative

H-151 irreversibly inhibit multimeric STING
complexes assembly at the Golgi, -curtailing
downstream signaling [83]. C-176 specifically

mitigates STING-associated inflammatory osteolysis
[131]. Building on this, Liu et al. subsequently
developed SP23, a STING-targeting proteolysis-
targeting, from C-170, effectively dampening
inflammation in a murine model of cisplatin-induced
acute kidney injury [132]. Nitro-fatty acids (NO.-FAs),
endogenously lipid, alkylate STING at Cys88, Cys91,
and His16, impeding its palmitoylation [133].
Electrophilic acrylamide, BPK-21 and BPK-25,
binds to Cys91 residue of STING, precluding its
signaling activation in human primary T cells.
Notably, BPK-25 also inhibits cGAMP-induced
STING activation in peripheral blood mononuclear
cells [134]. Tetrahydroisoquinolone derivative 18
interacts with Thr263 of STING, fostering an inactive
conformation and obstructing cGAMP-mediated
cytokine production [135]. Astin C, a cyclic peptide,
competitively occupies cyclic dinucleotide binding
sites, thwarting cGAS-STING signalosome assembly
in inflammatory responses in Trex1/- mice [82].
Further, compound 13, a butenolide

heterodimer-based inhibitor, selectively inhibits the
cGAS-STING pathway, reducing IFN-f and viral
dsDNA-induced gene expression in THP-1 cells [136].
These findings indicate that the blockade of the
downstream signal pathway is a more efficacious

approach to controlling the metabolic
changes-induced inflammatory response.
4.6. AIM2 Inflammasome Inhibitors

The activation of the AIM2 inflammasome

consistently occurs concomitantly with the activation
of other inflammasomes during viral infections, thus
AIM2 inhibitors are anticipated to be used in
combination with other agents that modulate the
immune response. Several compounds have been
identified to repress the AIM2
inflammasome-mediated immune response,
including CRID3 [137], shikonin [138], compound
J114 [139], and the bisphenol compound obovatol
[140]. Thus far, no AIM2-specific inhibitors have been
reported.

4.7. Metabolic Checkpoint Inhibitors

Metabolic checkpoints play a pivotal role in the
regulation of the innate immune response, thereby
ensuring the optimal functioning of immune cells
such as macrophages and dendritic cells. Principal
metabolic regulators include AMP-activated protein
kinase (AMPK) and mTOR, which are capable of
sensing cellular energy status and nutrient availability
[141]. AMPK activation facilitates the catabolic
pathways that generate ATP, thereby supporting the
survival and function of innate immune cells under
conditions of low energy. Conversely, mTOR
stimulates anabolic processes, promoting cell growth,
proliferation, and effector functions in response to
nutrient abundance. The nuclear factor of activated
T-cells (NFAT), which is activated by calcineurin,
plays a role in the innate immune response by
regulating the production of pro-inflammatory
cytokines [142]. Immunosuppressive agents such as
rapamycin inhibit the activity of mTOR, which in turn
reduces the inflammatory activity of innate immune
cells [143]. This can be beneficial in conditions such as
sepsis, organ transplantation, and chronic
inflammation. The modulation of these metabolic
checkpoints by pharmacological agents demonstrates
the intricate interplay between metabolism and innate
immune regulation, thereby providing potential
therapeutic strategies for inflammatory and
immune-mediated diseases.
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Table 1. Inhibitors that control metabolic signaling.

Inhibitor

Chemical Structure

Mode of Regulation

Disease Types

References

Glycolysis inhibitors
2-DG

3-(3-pyridinyl)-1-(4-pyridinyl)-2-
propen-1-one

4-Octyl itaconate

Capsaicin

iminostilbene or shikonin

TEPP-46

DASA-58

D5

NADPH oxidase inhibitors
Apocynin

HO

Competitively inhibits the
production of
glucose-6-phosphate

Binds to PFKFB3 in a
dose-dependent manner

Binds to Cys22 of GAPDH

Binds to Cys424 of PKM2

Binds to PKM2 in a
dose-dependent manner

Promotes PKM2 tetramer
formation

Promotes PKM2 tetramer
formation

Promotes PKM2 tetramer
formation

Blocks p47phox membrane
translocation

Acute lung and kidney injury in
mice; COVID-19 and

herpes simplex virus infected
patients

Acute lung injury mice model

Endotoxaemia mice model

Septic shock mice model;

neuropathic pain and amyotrophic

lateral sclerosis patients

Myocardial ischemia-reperfusion

injury and non-alcoholic fatty liver

disease mice models

Encephalomyelitis and multiple
sclerosis mice models

Hepatic fibrosis mice model

Ulcerative colitis mice model

Corneal alkali burn mice model;
sodium-induced declines in

cutaneous microvascular function

bronchial asthma patients

[91-93]

[88]

[95]

[%6]

197, 99]

[20]

[18, 101]

[102]

[104, 105,
148]
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A mitochondria-targeted
antioxidant

Tissue hypoxia induced by
neurological deficits in mice;
improve vascular function
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exercise-induced mitochondrial
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Airway remodeling and erectile
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Binds to residues Arg364 Subarachnoid hemorrhage-induced [120]
and Tyr421 of cGAS brain injury, cerebral venous sinus
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rheumatoid arthritis, and
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models in mice
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Inhibits the enzymatic
activity of cGAS

Binds to residues Lys384,
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Disrupt assembly of the
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complexes
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infection, and diabetic nephropathy Clinical trial

in mice No.
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6
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in mice; patients with
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multimeric STING
complexes

Binds to residues Cys88,
Cys91, and His16 of STING

Binds to residue Cys 91 of
STING

Binds to residues Thr263
and Thr267 of STING

Mice renal cell carcinoma model [132]
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N/A
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mTOR inhibitor
Rapamycin

Binds to the cyclic Colitis and cardiac anomalies in [82]
dinucleotide sites of STING mice

A pathway-specific N/A [136]
antagonists of cyclic
GMP-AMP synthase

Inhibits formation of ASC
complexes

Spinal cord injury in mice [137]

Dampens formation of ASC Acute liver injury, ovarian cancer,  [138]
specks and directly inhibit  skin diseases, wound healing, and
caspase-1 enzymatic lung cancer in mice

activity

Blocks interaction between  Mice keratitis model [139]
AIM2 and ASC and inhibit
ASC oligomerization

Inhibits formation of ASC
pyroptosome

Mice Alzheimer's disease, colorectal [140]
cancer, bone disorders, and
hepatocellular carcinoma models

Inhibits PI3K-Akt signaling, Glaucoma, lung injury, and aging in [141, 149]
AMPK and mTOR activity — mice; tuberous sclerosis

complex-associated tumors in

patients

4.8. Combination Therapies

Recent studies highlight the promise of
combining metabolic modulators with
immune-targeted therapies to counteract pathological
metabolic adaptations in immune cells. In cancer
immunotherapy, glycolysis inhibitors (e.g., 2-DG) or

monocarboxylate transporter 1 (MCT1) inhibitors
(AR-C155858, MCT1i) synergize with anti-PD-1
antibodies to alleviate lactate-driven
immunosuppression and reverse T cell exhaustion,
enhancing antitumor responses [144, 145]. Similarly,
MCT1 inhibitors like AZD3965 improve chimeric
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antigen receptor T-cell efficacy in B-cell malignancies
by mitigating metabolic competition in the tumor
microenvironment [146]. In psoriasis, the combination
of IL-17 antibodies with soraphen A, an acetyl-CoA
carboxylase (ACC) inhibitor, targets the metabolic
reprogramming of yO0T17 cells. These cells shift
toward aerobic glycolysis and  ATP-citrate
synthase-dependent fatty acid synthesis under
inflammatory conditions. The blocking of ACC by
soraphen A has been shown to disrupt fatty acid
synthesis, deplete lipid stores, and suppress IL-17A
production in y8T17 cells. This, in turn, has been
demonstrated to potentiate the therapeutic effect of
IL-17 inhibition [147]. These examples underscore the
importance of multi-pathway engagement to
overcome metabolic plasticity in immune cells.

5. Future Prospective and Challenges

In future research, several key areas are likely to
significantly impact the therapeutic approaches
targeting cellular metabolic programming. Firstly, a
comprehensive  analysis  of  the  intricate
interconnections between pathways such as
glycolysis, lipid metabolism, and the pentose
phosphate pathway will provide a more nuanced
understanding of metabolic programming, which in
turn will inform the development of more practical
therapeutic strategies. Computational modeling and
artificial intelligence are emerging as powerful tools
to decipher complex metabolic networks and predict
therapeutic outcomes, enabling researchers to identify
critical nodes for intervention. Secondly, the
relationship between mitochondrial function and
metabolic reprogramming needs to be thoroughly
explored, which is of particular importance in the
context of modulating innate immune responses and
facilitate the development of more efficacious
treatments.

Another significant challenge in the field is the
need to account for interspecies differences in
immune regulation, particularly between murine
models and human physiology, to enhance the
translational potential of preclinical findings.
Challenges include metabolic redundancy, off-target
effects (e.g.,, NOX inhibitors affecting non-immune
cells), and interspecies variability limiting
translational potential. Personalized approaches may
be needed to account for patient-specific metabolic
profiles. The advent of personalized medicine
approaches, meticulously tailored to individual
metabolic and immune profiles, plays a pivotal role in
optimizing therapeutic efficacy and minimizing
adverse effects. This assertion is particularly
pronounced in the context of immune-mediated
diseases, given their inherent heterogeneity. A

paucity of human data exists regarding DUOX
isoforms in IBD, as well as the role of TCA metabolites
in chronic inflammation. Moreover, the majority of
combination therapies are still in the preclinical stage,
emphasizing the necessity for clinical validation.

In conclusion, the advent of new technologies
and applications provides researchers with powerful
tools for advancing metabolic reprogramming
research. The integration of immunology, metabolism,
bioinformatics, and clinical medicine can facilitate a
comprehensive  understanding of  metabolic
reprogramming. Techniques such as single-cell
sequencing, mass spectrometry, and CRISPR gene
editing are of pivotal importance for the uncovering
of detailed molecular mechanisms and the

identification of potential therapeutic targets.
Continued research, coupled with innovative
technologies and interdisciplinary collaboration,

demonstrates considerable potential for translating
metabolic reprogramming into groundbreaking
therapies for immune-related diseases.
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2-DG:  2-deoxyglucose; ACC: acetyl-CoA
carboxylase; AIM2: absent in melanoma 2; Akt:
serine/threonine kinase 1; AMPK: AMP-activated
protein kinase; ASC: PYD and CARD domain
containing; BMDM: bone  marrow-derived
macrophage; CD28: cluster of differentiation 28;
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6-phosphate; FADH»: flavin adenine dinucleotide;
FUNDCI: funl4 domain-containing protein 1; G3P:
glycerol-3-phosphate; G6P: glucose 6-phosphate;
GAPDH:  glyceraldehyde-3-phosphate  dehydro-
genase; GLUT: glucose transporters; GM-CSEF:
granulocyte-macrophage colony stimulating factor;
GSDMD: gasdermin d; GTP: guanosine-5'-
triphosphate; HIF-la: hypoxia-inducible factor-lca;
HK: hexokinase; IBD: inflammatory bowel disease;
IFN: interferon; IKK: inhibitor of nuclear factor x B
kinase; IL: interleukin;, IMM: inner mitochondrial
membrane; iNOS: inducible nitric oxide synthase;
IRAK: IL-1R-associated kinases; IRF: interferon
regulatory factor; IkB: inhibitor of nuclear factor x B;
LC3: microtubule-associated protein 1A/1B-light
chain 3; LDHA: lactate dehydrogenase A; LPS:
lipopolysaccharide; MCT1: monocarboxylate
transporter 1, MitoQ: mitoquinol mesylate; mtDNA:
mitochondrial DNA; mTOR: mammalian target of
rapamycin; mtROS: mitochondrial reactive oxygen
species; NAD: nicotinamide adenine dinucleotide;
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NADH: nicotinamide adenine dinucleotide+
hydrogen; NADPH: triphosphopyridine nucleotide
hydrogen; NF-xB: nuclear factor x B; NLRC4:
NOD-like receptor family card domain containing 4;
NLRP3: NOD-like receptor family pyrin domain
containing 3; NMN: nicotinamide mononucleotide;
NOX: NADPH oxidase; NQO: quinone
oxidoreductases; NR: nicotinamide riboside; OMM:
outer mitochondrial membrane; OXPHOS: oxidative
phosphorylation; PD-1: programmed cell death
protein 1; PEP: 2-phosphoenolpyruvate; PFK1: 6-
phosphofructokinase-1; PFK2: 6-phosphofructo-2-
kinase; PFKFB3: fructose-2,6-biphosphatase 3; PFKL:
phosphofructokinase-1 liver type; PI3K:
phosphoinositide 3-kinase; PKM2: pyruvate kinase
isozymes M2; RAC: Ras-related C3 botulinum toxin
substrate; RET: reverse electron transport chain; ROS:
reactive oxygen species; SARS: severe acute
respiratory syndrome; siRNA: small interfering RNA;
STING: stimulator of interferon genes; TBK:
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cycle; TCA: tricarboxylic acid; TCR: T cell receptor; Tn
cell: T helper cell; TLR: Toll-like receptor; TNF-a:
tumor necrosis factor-a; Treg cell: regulatory T cell.
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