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Abstract 

Muscle-invasive (MI) urothelial carcinoma (UC) is a clinically challenging malignancy with a poor 
prognosis. Understanding the cellular dynamics that drive UC progression is critical for the 
development of optimized therapeutic strategies. Through integrative analysis of large-scale 
single-cell transcriptomic datasets from non-muscle-invasive (NMI) and MI tumours and validation 
with spatial transcriptomic datasets, we systematically characterized immune cell dynamics and 
cancer cell plasticity during UC progression. Our analysis revealed an immunosuppressive tumour 
microenvironment and a subset of cancer cells with upregulated major histocompatibility complex II 
(MHC-II) expression in MI tumours. Notably, MHC-II⁺ cancer cells were induced by interferon-γ 
signalling, as confirmed through in vitro experiments, and exhibited phenotypic alterations 
characterized by enhanced proliferative and migratory capacities. Furthermore, MHC-II⁺ cancer 
cells spatially colocalized with CD8⁺ T cells, regulatory T cells, and SPP1⁺ macrophages, where they 
engaged with inhibitory receptors on these immune cells, promoted CD8⁺ T cell exhaustion and 
facilitated immune evasion. 

Keywords: Urothelial carcinoma, Single-cell RNA sequencing, Cellular heterogeneity, MHC-II molecules, Muscle invasion, 
Immunosuppressive microenvironment 

Introduction 
Urothelial carcinoma (UC), a malignancy 

originating in the urothelium, is one of the most 
prevalent genitourinary cancers [1]. Approximately 
90–95% of UC cases arise in the bladder, while the 
remaining 5%–10% occur in the upper urinary tract 
(renal pelvis and ureter) [2]. Although urothelial 

carcinoma of the bladder (UCB) and upper tract 
urothelial carcinoma (UTUC) share histologic 
similarities and common risk factors, such as 
smoking, phenacetin use, and occupational exposure 
[3, 4], omics analyses have revealed distinct molecular 
profiles [5]. For example, UTUC is characterized 
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predominantly by a luminal papillary phenotype and 
exhibits a T-cell-depleted immune microenvironment 
[6, 7]. Furthermore, patients who progress to 
muscle-invasive (MI) UC have significantly worse 
survival outcomes than those with non-muscle- 
invasive (NMI) tumours, a pattern consistent with 
that of both UCB and UTUC [8]. Therefore, 
clarification of the mechanisms underlying UC 
progression to MI cancer is critical. Current 
biomarkers of tumor progression are associated with 
cell cycle regulation, MAPK signalling, apoptosis, 
chromatin stability, and the DNA damage response 
[9]. However, most of these biomarkers were 
identified through omics-based risk stratification or 
molecular subtyping, which limits insights into the 
specific contributions of certain cell types to tumour 
progression. 

Single-cell RNA sequencing (scRNA-seq) has 
emerged as a powerful tool for elucidating cellular 
heterogeneity, differentiation trajectories, and 
intercellular communication. Recent studies 
leveraging this technology have provided critical 
insights into intratumoral heterogeneity within UC, 
and have identified key cell types implicated in 
tumorigenesis and progression, including cytotoxic 
CD4+ T cell subsets, invasive cancer cell 
subpopulations, and cancer-associated fibroblasts 
[10-15]. Nevertheless, systematic comparisons of UC 
at single-cell resolution remain limited, particularly in 
the following contexts: (1) direct molecular contrasts 
between UCB and UTUC; (2) differences between 
NMI and MI UC; and (3) variations across distinct 
molecular subtypes of UC. 

In this study, we conducted an integrated 
analysis combining in-house and publicly available 
scRNA-seq datasets to systematically characterize 
cellular heterogeneity within the UC tumour 
microenvironment, with a specific focus on 
delineating both shared and distinct molecular 
features between UCB and UTUC at single-cell 
resolution. Furthermore, we performed a 
comprehensive investigation into the cellular and 
molecular mechanisms that drive UC progression to 
MI cancer, which was supported by spatial 
transcriptomic validation. 

Methods and Materials 
Sample collection and online dataset 
acquisition 

Four UTUC samples were obtained from four 
patients who underwent laparoscopic radical 
nephroureterectomy (RNU) at Peking University First 
Hospital. Pathological analysis confirmed that two 
patients had NMI ureteral UC, while the remaining 

patients had MI UC of the renal pelvis and ureter, 
respectively. These four UTUC samples were 
subjected to spatial transcriptomics sequencing. In 
addition, two normal ureteral samples were collected 
from two patients who underwent ureteral 
reconstruction at the same institution and were 
submitted for scRNA-seq. Samples were collected 
after written informed consent was obtained from all 
patients. The study was approved by the Biomedical 
Research Ethics Committee of Peking University First 
Hospital (No. 2022[Yan200]). 

ScRNA-seq data of 18 tumor tissues (Table S1), 
including eight UCB and ten UTUC cases, as well as 
three samples of adjacent normal bladder tissues, 
were obtained from Chen et al. [12] and Liang et al. 
[13] under the accession code HRA000212 and 
HRA001867, respectively, in the Genome Sequence 
Archive (GSA) for Human. Spatial transcriptomics 
data of four UCB tissues (Table S2) were retrieved 
from Gouin et al [16] under the accession number 
GSE171351 in the Gene Expression Omnibus (GEO). 
Additionally, bulk RNA-seq data for NMI UCB 
(n=477) were downloaded from the European 
Genome–Phenome Archive (EGA) (accession ID 
EGAD00001006656) [17]. Bulk RNA-seq data for 
muscle-invasive UCB (n = 431) were obtained from 
The Cancer Genome Atlas (TCGA) database. Bulk 
RNA-seq data for metastatic UC (n=348) were 
retrieved from the IMvigor210 cohort. In addition, we 
generated an internal transcriptome sequencing 
cohort, IUPU-UC, comprising 41 samples (Figure 1A), 
the detailed information of which is provided in Table 
S3. 

Single-cell suspension preparation and 
scRNA-seq  

The fresh ureteral mucosal tissues of two 
patients were stored in the MACS® Tissue 
Preservation Solution (Miltenyi Biotec, Germany) on 
ice within 30 minutes after surgery. After they were 
transported to the laboratory, single-cell suspensions 
were prepared through a combination of mechanical 
and enzymatic dissociation. The cell suspension was 
subsequently processed using the Single-Cell 3' 
Library and Gel Bead Kit V3.1 (10x Genomics, 
1000075) along with the Chromium Single Cell B Chip 
Kit (10x Genomics, 1000074). In accordance with the 
manufacturer’s instructions, the suspension was 
loaded onto a Chromium single-cell controller (10x 
Genomics) to generate the cDNA library. Finally, 
cDNA libraries were prepared and sequenced on an 
Illumina NovaSeq 6000 platform using a paired-end 
150 bp (PE150) reading strategy. 
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scRNA-seq data processing, integration and 
clustering 

Standard pipelines of the Cell Ranger Single-Cell 
toolkit (v7.0.0, 10X Genomics) were used to process 
FASTQ files of both in-house and online public 
samples to produce gene expression matrices based 
on the human reference genome (GRCh38–2020-A). 
The Seurat R package (v4.4.0) was used to 
subsequently analyse the scRNA-seq data. 
Low-quality cells with fewer than 200 or more than 
8000 expressed genes, and cells with more than 10% 
mitochondrial RNA content were filtered out and 
removed. The DoubletFinder [18] R package (v2.0.3) 
was used to remove potential doublets, with an 
assumed doublet rate of 0.075. The SCTransform 
method was applied to normalize and stabilize the 
variances of the scRNA-seq datasets for each 
individual sample, and regression accounted for the 
mitochondrial and ribosomal contents. All individual 
samples were integrated by using the reciprocal 
principal component analysis (PCA) pipeline to 
eliminate batch effects. We subsequently identified 
the top 2,000 highly variable genes for PCA, after 
which the top 40 principal components were selected 
for uniform manifold approximation and projection 
(UMAP) dimension reduction. Clustering was 
performed using shared nearest-neighbour graph 
construction (FindNeighbors) followed by the 
FindClusters function, which allowed a range of 
resolutions between 0.5 and 2. Analysis of 
differentially expressed genes (DEGs) was conducted 
across clusters generated at a resolution of 1 using the 
Wilcoxon rank sum test and the “FindAllMarkers” 
function. The major cell types were assigned to each 
cluster were related to the expression patterns of the 
canonical marker genes. For each sample, the 
proportion of each cell type was calculated by 
dividing the number of cells of that type by the total 
number of cells and multiplying by 100 to obtain a 
percentage. 

Malignant cell identification based on inferred 
CNV 

Malignant cells were identified among epithelial 
cells in tumour samples using the inferCNVpy 
algorithm (version 0.4.2; 
https://github.com/icbi-lab/infercnvpy). The 
function infercnvpy.tl.infercnv was applied to 
immune cells as normal references, to infer copy 
number variation (CNV). Subsequent dimensionality 
reduction was performed using PCA, followed by 
clustering on the basis of CNV profiles. The function 
infercnvpy.tl.umap was used to visualize CNV 
patterns. The CNV scores for each cell were calculated 
using the cnv.tl.cnv_score function. Cells were 

deemed malignant if they met the following criteria: 
(i) they demonstrated the ability to form separate 
clusters, and (ii) they had higher CNV scores than 
those of reference cells or known normal cell types. 

Defining meta-programs of malignant cells 
using cNMF 

To capture tumour heterogeneity, we employed 
nonnegative matrix factorization (NMF) in the 
malignant cells of each sample. NMF was performed 
for each sample using the consensus NMF (cNMF) 
(v.1.3) (https://github.com/dylkot/cNMF). This 
algorithm decomposes a single-cell count matrix (N 
cells × G genes) into two nonnegative matrices: a gene 
expression program matrix (K × G) and a program 
usage matrix (N × K), which elucidate the 
contribution of individual genes to each program and 
the cell-specific patterns of program usage. The 
parameter K represents the number of gene 
expression programs to be inferred. First, we 
performed data preprocessing to filter out 
mitochondrial and ribosomal genes. Subsequently, 
cNMF was performed with K values ranging from 4 to 
12, using 200 independent replicates for each value to 
ensure robust results, thereby generating 72 programs 
per sample. Programs that recurred across different K 
values and samples were defined as robust NMF 
programs according to the method outlined by Gavish 
et al. [19]. Ultimately, a total of 133 robust NMF 
programs were identified. 

We next clustered the robust NMF programs to 
identify the meta-programs (MPs) on the basis of 
similarity (Jaccard index), which was calculated by 
the iteratively selection of robust programs according 
to gene overlap [19]. Each MP consists of the top 30 
genes with the greatest overlap across programs. The 
final MPs were obtained after those that contained 
programs from only a single sample were excluded. 
We subsequently annotated the MPs by assessing 
their enrichment in functional gene sets, primarily 
using gene sets from MsigDB, Hallmark, and 
CancerSEA [20].  

Cell type distribution analysis 
To assess the distribution of cell clusters across 

different phenotypic states, we quantified the relative 
abundance of each cluster within the total cell 
population or among major cell types in samples 
categorized by pathological conditions. To determine 
the degree of enrichment or depletion of specific cell 
clusters in relation to the phenotypic context, we 
computed the ratio of observed to expected cell 
counts (Ro/e) for each tissue type and phenotype. The 
expected cell numbers for each cell cluster were 
obtained using the STARTRAC-dist index through the 
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χ2 test [21]. A Ro/e value greater than 1 was indicated 
as enrichment of a cell subset within a particular 
phenotype, whereas a value less than 1 indicated 
depletion. 

Cell subcluster identification  
The major cell lineages, including T cells, NK 

cells, myeloid cells, fibroblasts, and endothelial cells, 
were then isolated for subsequent reclustering 
analysis. For each cell lineage, the harmony algorithm 
(v0.1.0) was employed to mitigate potential batch 
effects. Following batch effect correction, 
dimensionality reduction, graph-based clustering, 
and UMAP visualization were performed. DEGs for 
each subcluster were identified using the 
“FindAllMarkers” function in Seurat with default 
parameters. Cell subclusters were subsequently 
annotated according to the the expression profiles of 
DEGs and canonical marker genes. T cells and NK 
cells were reclustered and annotated on the basis of 
function-associated signatures according to previous 
studies [13, 22], and were further validated using the 
TCellSI [23] method. Macrophage polarization was 
assessed by calculating M1 and M2 polarization gene 
signature scores (Table S4), as defined by Liu et al. 
[24]. The characterization of endothelial cell 
phenotypes was performed using gene signatures 
(Table S4) specific to tip and stalk cells [25]. Per-cell 
scores were calculated using Seurat’s 
AddModuleScore function, which computes the 
average expression of gene signatures relative to 
control genes, enabling quantification across cell 
subclusters. 

Transcriptomic molecular subtypes of MI UC 
The pathological classification of NMI and MI is 

based on the diagnosis provided by the pathologists. 
Bulk RNA-seq samples from patients with MI UC 
were further classified into luminal and basal 
phenotypes according to the BASE47 gene set 
(bladder cancer analysis of subtypes by gene 
expression) (Table S4) [26], and this classification was 
subsequently validated using the BLCAsubtyping 
software (v2.1.1; available at https://github.com/ 
cit-bioinfo/BLCAsubtyping). We retrieved the gene 
expression matrix for thirty-seven bladder cancer cell 
lines from the Cancer Cell Line Encyclopedia (CCLE) 
database (https://sites.broadinstitute.org/ccle/). 
These cell lines were subsequently classified into 
luminal and basal phenotypes using the same method 
applied to the bulk RNA-seq data. For scRNA-seq and 
spatial transcriptomics data from patients with MI 
UC, we generated pseudobulk data by aggregating 
expression profiles within each sample, followed by 
categorization into luminal and basal subtypes using 

the same classification approach. Furthermore, we 
calculated basal and luminal signature scores for all 
the scRNA-seq samples using the BASE47 gene set 
and the AUCell algorithm, which ranks gene 
expression per cell and computes an AUC score for 
each gene set. Per-sample scores were obtained by 
averaging the AUC scores across all cells in each 
sample and were used for subsequent correlation 
analyses. 

Cell type deconvolution in bulk RNA-seq data 
The BayesPrism algorithm [27] was used to 

investigate the cell type abundance in the bulk 
RNA-Seq data. In comparison to CIBERSORTx, 
BayesPrism integrates both a deconvolution module 
and an embedding learning module that employs the 
expectation maximization technique to accurately 
estimate tumour composition by linearly combining 
malignant gene programs. This approach enhances 
the precision of tumour microenvironment 
characterization [27]. Annotated immune cell 
subclusters and cancer cell subsets served as reference 
cell type-specific expression profiles for the 
deconvolution of bulk RNA-seq data from the 
TCGA-BLCA cohort and the UROMOL 2020 [4] 
cohort. The cell type abundances were subsequently 
compared across tissue subtypes and molecular 
subgroups, after which a correlation analysis were 
performed to explore the relationships among the 
identified cell subclusters. 

Pseudotime analysis  
We used the R package monocle3 (v1.3.1) 

(https://cole-trapnell-lab.github.io/monocle3/) to 
perform pseudotime analysis, and aimed to 
investigate the differentiation trajectories of T-cell and 
macrophage subsets. To define the initial point of the 
pseudotime trajectory, we utilized CytoTRACE [28] to 
estimate the differentiation potential of individual 
cells. Cell subsets with higher CytoTRACE scores, 
which are indicative of a lower degree of 
differentiation, were considered as the root cells for 
the pseudotime analysis. Subsequently, we visualized 
both cell density and gene expression patterns along 
the pseudotime axis using the R packages ggridges and 
ClusterGVis (https://github.com/junjunlab/Cluster 
GVis).  

Transcription factor analysis  
To evaluate transcription factor activity within 

cancer cell subsets, we performed single-cell 
regulatory network inference and clustering 
(SCENIC) analysis using the pySCENIC package 
(v0.12.1) [29] in Python (v3.9) with default 
parameters. The coexpression network was 
constructed using GRNboost2, and regulons were 
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identified through RcisTarget. The activity of each 
regulon in individual cells was quantified using the 
AUCell algorithm, which provides scores that reflect 
the transcriptional activity across the cellular 
landscape. 

Cell–cell communication analysis  
We utilized CellPhoneDB (v5.0) 

(https://github.com/ventolab/CellphoneDB) to infer 
potential ligand–receptor interactions between cancer 
cell subsets and immune cell subsets within the 
tumour microenvironment. This updated toolkit 
leverages a comprehensive, manually curated 
database of receptors, ligands, and their interactions, 
thereby improving the precision of cell–cell 
communication analysis. To compare cell–cell 
interactions between the cellular components of the 
MI and NMI groups, we adopted the MultiNicheNet 
cell–cell communication analysis framework (v2.0.0) 
(https://github.com/saeyslab/multinichenetr), 
which is specifically designed for multi-sample, 
multi-condition scRNA-seq datasets. Ligand–receptor 
pairs exhibiting statistically significant interactions (P 
value < 0.05) were identified and extracted for further 
visualization. 

Survival analysis  
The bulk RNA-seq data from the TCGA-BLCA, 

IMvigor210 and in-house IUPU-UC cohort were used 
for survival analysis. Cell type-specific gene 
signatures were defined on basis of the top 50 marker 
genes identified using the COSine similarity-based 
marker Gene identification (COSG) method [30]. The 
signature score for each cell type was computed, and 
patients were stratified into high- and low-signature 
score groups according to an optimal cut-off value 
determined by the survminer R package (v0.4.9). 
Kaplan–Meier (KM) survival curves were 
subsequently generated using the survival R package 
(v3.2.11) to assess the prognostic significance of the 
identified cell type signatures. 

Tissue preparation and data preprocessing for 
spatial transcriptomics  

Tissue sections from four UTUC samples were 
processed according to the tissue preparation guide of 
Visium Spatial Gene Expression tissue preparation 
guide for fresh-frozen tissues (10x Genomics, 
CG000636). The tissue sections were mounted onto 
Visium Spatial Tissue Optimization Slide and 
subjected to methanol fixation and hematoxylin‒eosin 
staining. The optimal permeabilization time was 
determined and applied to facilitate efficient 
transcript capture. Barcoded cDNA synthesis, 
amplification, and library construction were 

conducted using Visium Spatial Gene Expression 
Reagent Kits (10x Genomics). Finally, sequencing was 
conducted on an Illumina NovaSeq 6000 platform in 
150 bp paired-end mode. 

Visium raw sequencing data were processed 
using Space Ranger (v1.3.0, 10x Genomics) to generate 
gene expression count matrices. Reads were aligned 
to the hg38 (GRCh38-2020-A) human reference 
genome and mapped against the corresponding probe 
set reference for humans. After preprocessing, spots 
with fewer than 500 counts, or fewer than 300 
measured genes were removed. Additionally, 
mitochondrial genes were filtrated for downstream 
analysis. SCTransform-based normalization, 
dimensional reduction and clustering analysis were 
conducted using the Seurat R package (v4.4.0) under 
default parameters. 

Deconvolution and colocalization analysis of 
Visium data 

To infer the cellular composition of each Visium 
spot, we employed cell2location (v0.1.3) [31] for cell 
type deconvolution. Prior to deconvolution, a 
permissive gene selection was performed using 
default parameters to define reference cell type 
signatures from the scRNA-seq data, and model 
training was configured for 500 epochs. The 
cell2location model was subsequently trained for 
30,000 epochs, and the 5% quantile of the estimated 
posterior distribution of cell abundance was extracted 
and stored in an AnnData object. To delineate cellular 
niches across tissue sections, we applied the NMF 
function of cell2location to identify distinct cellular 
compartments. Colocalization analysis was conducted 
using the run_colocation function with default 
settings, and the optimal number of factors was 
determined manually the basis of biological 
relevance. We used mistyR (version 1.8.0) [32] to 
determine the importance of the intrinsic view within 
a spot by modelling cell type cell2location estimations 
of the NMI and MI phenotype slides. Pairwise 
Kullback–Leibler (KL) divergences between cell types 
were calculated using a symmetric KL function [33]. 
To assess the statistical significance of spatial 
colocalization, a null distribution of KL values was 
generated by randomly sampling 80% of the spots 
from each cell type and computing the KL divergence 
over 1000 permutations. Empirical p-values were 
calculated as the fraction of null KL values exceeding 
the observed KL divergence. The differences in KL 
values compared with the observed values among cell 
types are illustrated as heatmaps. In addition, the 
observed KL values were plotted against the null 
distribution using density plots, with cell types 
coloured for clarity. 
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Inference of pathway activity using PROGENy  
To infer signalling pathway activities in cancer 

cell subsets, we applied the PROGENy (v1.28.0) R 
package [34] with default parameters. The pathway 
enrichment scores were averaged and analysed across 
pathological and molecular subgroups to identify 
pathway-specific differences. For the Visium data, we 
used the multivariate linear model (mlm) method 
implemented in the decoupleR package (v1.9.2) [35] to 
estimate pathway enrichment scores. Specifically, for 
each Visium spot, pathway activity was inferred 
according to the top 500 genes responsive to the 
PROGENy model, ranked by statistical significance (p 
value). 

Multiplex immunofluorescence staining 
Formalin-fixed, paraffin-embedded (FFPE) 

tissue sections from UC patients were deparaffinized, 
rehydrated, and rinsed with distilled water. Antigen 
retrieval was performed using citrate buffer. 
Multiplex immunofluorescence staining was 
conducted with a fluorescent immunohistochemistry 
kit (Beyotime), according to the manufacturer’s 
protocol. Primary antibodies targeting pan-CK, 
HLA-DRA, and CD68 (Proteintech) were applied to 
the sections, which were subsequently incubated 
overnight at 4 °C. The slides were then treated with 
HRP-conjugated secondary antibodies (mouse & 
rabbit) for 10 minutes at room temperature, followed 
by tyramide signal amplification. After completing 
antibody staining was complete, the cell nuclei were 
counterstained with DAPI. The slides were scanned 
using a Zeiss LSM900 confocal microscope, after 
which the images were further processed using 
SlideViewer (v2.8) software. 

Cell lines culture and treatment  
The human bladder cancer cell lines T24 and 

5637 were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). Both cell 
lines were cultivated in RPMI-1640 medium 
supplemented with 10% foetal bovine serum (FBS) 
and 1% penicillin‒streptomycin. Cultures were 
incubated in a humidified atmosphere containing 5% 
CO₂ at 37 °C. For experimental treatments, T24 and 
5637 cells were exposed to recombinant human IFN-γ 
(MedChemExpress) at concentrations of 0, 5, 10, and 
20 ng/mL for 72 hours and maintained at 37 °C. To 
completely block the JAK signalling pathway, cells 
were pretreated with the selective JAK1/2 inhibitor 
ruxolitinib (MedChemExpress, 10 and 20 μM) for 1 
hour prior to IFN-γ stimulation and were exposed to 
the inhibitor throughout the 72-hour treatment 
period. 

Lentiviral transduction and screening for 
stable cell lines 

The HLA-DRA-overexpression (HLA-DRA-OE) 
and control lentiviral vectors were constructed using 
a Lentiviral Packaging Kit (Yeasen). Lentiviral 
transduction was performed according to the 
manufacturer’s instructions to generate HLA-DRA- 
OE and control (HLA-DRA-NC) cell lines. Cells with 
stable expression were selected by culturing in 
medium supplemented with 10 μg/mL blasticidin 
(Yeasen) for two weeks. 

Western blot analysis  
Cells were cultured in 10-cm plates and lysed in 

RIPA complete lysis buffer (Beyotime) for total 
protein extraction. After quantification and 
denaturation, 20 μg of proteins were separated by 8–
12% SDS–PAGE and transferred onto a PVDF 
membrane (Millipore). The membrane was blocked 
with 5% bull serum albumin and incubated with 
primary antibodies (Cell Signaling Technology) (Jak1, 
1:1000; phospho-Jak1(Tyr1034/1035), 1:1000; Stat1, 
1:1000; phospho-Stat1 (Tyr701), 1:1000; HLA-DRA, 
1:10000, β-tubulin, 1:5000) overnight at 4 °C, followed 
by by incubation with secondary antibodies. Protein 
signals were detected using the BeyoECL Plus 
chemiluminescent reagent (Beyotime). 

Proliferation and migration assay 
Cell Counting Kit-8 (CCK-8, Beyotime) and 

colony formation assays were used to assess cell 
proliferation. HLA-DRA-OE and control T24 and 5637 
cells (1,000/well) were seeded in 96-well plates and 
cultured. Cell viability was measured at 0, 1, 2, 3, 4, 
and 5 days by adding 10 μL CCK-8 solution to 90 μL 
medium, followed by incubation at 37 °C for 2 h and 
absorbance detection at 450 nm using a microplate 
reader (Bio-Rad). For colony formation, 1,000 cells 
were seeded into six-well plates and cultured until 
visible colonies formed. Colonies were fixed in 4% 
paraformaldehyde (PFA) for 15 min and stained with 
0.1% crystal violet for 15 min. Colonies containing > 
50 cells were counted for analysis. 

Wound-healing assay was applied to evaluate 
cell migration. Cells were seeded in six-well plates 
and grown to 80–90% confluence. A linear scratch was 
made using a sterile pipette tip, and cells were 
cultured in medium containing 2% FBS for 24 h. 
Wound closure was imaged at 0 and 24 h with a 
digital microscope, and migration distance was 
quantified using ImageJ. 

Transwell assays were further used to assess cell 
migration and invasion. A total of 2 × 10⁴ T24 cells or 
5 × 10⁴ 5637 cells in 100 μL serum-free medium were 
seeded into the upper chambers (8 μm pore size, 
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Corning) precoated with Matrigel (1:8 dilution, 
50 μL/well) for invasion assays or left uncoated for 
migration assays. The lower chambers contained 
500 μL medium containing 10% FBS. After incubation 
at 37 °C for 24–48 h, the migrated or invaded cells 
were fixed in 4% PFA and stained with 0.1% crystal 
violet before visualization and quantification. 

Statistical analysis  
All the statistical analyses and data 

visualizations were performed using R (v4.3.2). 
Differences between two independent groups were 
assessed using the Wilcoxon rank-sum test for 
nonparametric data and Student’s t test for normally 
distributed data. Comparisons among multiple 
groups were conducted using one-way ANOVA, 
followed by post hoc tests where appropriate. All 
p-values were two-sided, and p < 0.05 considered 
indicated statistical significance. 

Results 
Single-cell transcriptomic atlas of UC and 
normal samples 

To determine the heterogeneity within UC and 
its potential mechanisms of progression, we analysed 
the single-cell transcriptomic profiles of ten UTUC 
samples, two normal ureter tissue samples, eight UCB 
tissue samples, and three adjacent bladder mucosa 
tissue samples (Figure 1A and Table S1). We classified 
the MI UC samples into luminal and basal phenotypes 
according to the BASE47 gene sets [26] (Figure S1A 
and S1B, Table S4). After stringent quality control and 
dimensionality reduction, we obtained transcriptional 
profiles of a total of 136,687 cells, which were broadly 
categorized into nine major cell types on basis of the 
expression of canonical marker genes; cell types 
included epithelial cells, fibroblasts, endothelial cells, 
T cells, NK cells, B cells, plasma cells, myeloid cells 
and mast cells (Figure 1B and 1C). These cell types 
were common between the pathological and 
molecular subtypes, although their proportions 
varied across these subtypes (Figure 1D). Stromal 
cells, including fibroblasts and endothelial cells, were 
significantly depleted in both NMI and MI tumour 
samples (Fig. 1E and 1F). The abundance of 
tumour-infiltrating T cells was significantly greater in 
the MI samples than in the NMI samples, with the 
most pronounced increase observed in the MI basal 
subgroup. These findings suggest a potential 
association between MI progression and enhanced 
T-cell infiltration. Additionally, the proportions of 
epithelial cells were elevated in tumour samples 
compared with normal tissues but were notably 
reduced in the MI basal subgroup (Figure 1D, 1E and 

1F). 
We further explored single-cell transcriptomic 

differences within the UTUC and UCB ecosystems. 
Our analysis revealed a similar distribution of major 
cell types across both tumour types (Figure 1F, S1C), 
although the proportions of certain cell types varied. 
Specifically, mast cells and endothelial cells were 
more abundant in UCB, whereas myeloid and B cells 
were enriched in UTUC (Figure S1D). DEG analysis of 
major cell types revealed that many genes, including 
mitochondrial genes and those that encode noncoding 
RNAs, were significantly differentially expressed 
between UCB and UTUC (Figure S1D). Hallmark 
pathway enrichment analysis, which focused on cell 
types with notable differences, revealed several 
tumour-associated pathways, including oxidative 
phosphorylation and TGF-beta signalling in mast cells 
(Figure S1F), protein secretion in endothelial cells 
(Figure S1G), and angiogenesis in B cells (Figure S1H). 
Whether these pathways represent true differences 
between UTUC and UCB requires validation. 
Therefore, further investigations incorporating 
cohorts with larger sample sizes and functional 
validation are necessary to clarify the biological 
relevance of these findings. 

Malignant cells in MI tumours exhibit an 
enhanced immune-related features  

Clusters of epithelial cells in tumour samples 
were highly dispersed, which indicates significant 
intertumoral heterogeneity (Figure 2A). We 
distinguished 49,698 cancer cells from epithelial cells 
based on the basis of the inferred CNV scores (Figure 
2B, 2C, S2A, S2B). A consensus NMF algorithm was 
then applied to identify gene programs preferentially 
expressed in cancer cells across tumour samples, 
which resulted in 133 robust NMF programs. 
Clustering analysis retained seven meta-programs 
(MP1–7) that represent common expression patterns 
(Figure 2D). Each MP was characterized by a distinct 
signature of 30 genes (Table S5, and Figure S2C) and 
was annotated according to functional enrichment 
analysis (Figure 2E, S2D). The identified MPs are 
associated with various biological processes, 
including oxidative phosphorylation and metabolism 
(MP1), stress and hypoxia responses (MP2 and MP7), 
urothelium-related features (MP3 and MP6), and cell 
cycle/proliferation (MP4) (Figure 2E). MP5, 
characterized by immune-related features, includes 
genes involved in MHC-II antigen presentation (e.g., 
CD74, HLA-DRA, and HLA-DPA1) and the interferon 
response (e.g., IFITM3 and IFI6). Notably, the majority 
of genes in MP5 were highly expressed in the MI 
group, particularly in MI basal phenotype samples 
(Figure 2F). 
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Figure 1. Single-cell transcriptomics reveal the cellular heterogeneity of UC. (A) Schematic illustration of sample collection and analysis workflow. (B) UMAP plot of 136,687 
single cells, colored by nine major cell types. (C) Violin plot showing representative marker genes for the major cell types. (D) Cell fraction (as percentages) and cell number per 
group, stratified by molecular subtype (left) and tissue type (right). (E) Cell density plots stratified by molecular subtype. (F) Distribution of the ratio of observed to expected cell 
numbers (Ro/e) for each cell type across tissue type (left) and molecular subtype (right), as estimated by the STARTRAC-dist index. A Ro/e value > 1 indicates enrichment of a given 
cell type, whereas a Ro/e value < 1 indicates depletion. Abbreviations: UTUC, upper tract urothelial carcinoma; UN, normal ureteral mucosa; UCB, urothelial carcinomas of the 
bladder; BN, normal bladder mucosa; MP, meta-program; IF, immunofluorescence. 
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Figure 2. Identification and functional analysis of intratumoral malignant meta-programs in UC. (A) UMAP plot showing nine cell types identified from tumor samples. (B) UMAP 
plot highlighting copy number variation (CNV) scores across all cells. (C) UMAP visualization of CNV status across all cells. (D) Heatmap showing the Jaccard similarity index of 
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robust NMF programs, hierarchically clustered into seven meta-programs (MPs). (E) Heatmap illustrating biological pathway enrichment of the seven MPs. (F) Bubble plot 
displaying the expression levels of 30 signature genes associated with MP5. (G) Bar plots comparing the scores of the seven MPs across different groups. Colored dots represent 
individual samples. Statistical significance is indicated by asterisks (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001), and “ns” indicates no statistical difference. (H) Spearman correlations 
between MP5 scores and T-cell proportions in tumor samples. (I, J) Spearman correlations between MP5 scores and phenotype signature scores in tumor samples: (I) luminal 
scores; (J) basal scores. (K) Bar plot comparing MP5 scores across three immune subtypes (Inflamed, Excluded, and Desert) in the IMvigor210 cohort. (L) Spatial feature plots 
showing H&E-staining images (top) and MP5 signature scores (bottom) in tumor tissue sections across molecular subtype. Specifically, the UCB01 sample was obtained from the 
publicly available dataset (GSE171351). 

 
To investigate the relationships between MPs 

and tumour progression as well as tissue-specific 
features, we calculated the MP signature scores across 
all cancer cells and compared the average scores 
between tumour sample groups. Tumours in the MI 
group had significantly higher MP5 scores (P < 0.01) 
(Figure S2E), particularly in MI basal samples (P < 
0.001) (Figure 2G), which suggests that the MP5 
signature is associated with tumour progression. 
MP6, which is linked to luminal phenotype related 
genes (e.g., SPINK1, UPK1, and UPK3), had 
significantly lower scores in MI basal samples (P < 
0.05) (Figure S2C and Figure 2G). However, no 
significant difference in MP scores was observed 
between UTUC and UCB (Figure S2F). Additionally, 
we found that the MP5 score were positively 
correlated with T-cell ratio (R = 0.55; P = 0.019), the 
myeloid cell ratio (R=0.62; P=0.0062), and the basal 
phenotype signature score (R = 0.51; P = 0.029), but 
negatively correlated with the luminal signature score 
(R = -0.64; P = 0.0041) (Figure 2H-2I, and Figure 
S2G-S2H). MP5 scores were highest in 
immune-inflamed tumours and lowest in 
immune-desert tumours of the IMvigor210 cohort (P 
< 0.001) (Figure 2K). Spatial analysis further revealed 
that most spots in the MI basal UC samples had high 
MP5 scores, wheras those in the NMI and MI luminal 
UC samples had lower scores (Figure 2L). 

Expansion of immunosuppressive T cells 
during UC progression 

Tumour-infiltrating lymphocytes play dual roles 
in the tumour microenvironment: they mediate 
tumour cell recognition and cytotoxicity, thereby 
enhancing anti-tumor immunity, while specific 
subsets, such as regulatory T cells (Tregs), contribute 
to immune suppression and tumor immune evasion. 
We reclustered T cells and natural killer (NK) cells 
into ten major subtypes (Figure 3A) and annotated 
these subtypes on basis of reported function- 
associated signatures (Figure 3B). The subtypes 
included three CD4+ T cell clusters (CD4T-C1-CCR7, 
CD4T-C2-IL17A, and CD4T-C3-CXCL13), two Treg 
cell clusters (Treg-C1-SELL and Treg-C2-TNFRSF9), 
three CD8+ T cell clusters (CD8T-C1-GZMK, 
CD8T-C2-IFNG, and CD8T-C3-LAG3) and two NK 
cell clusters (NK-C1-FCGR3A and NK-C2-XCL1).  

Additionally, we used the signatures of TCellSI 
[23] to assess the T-cell states, and reported that the 

regulatory signature scores of the Treg-C2-TNFRSF9 
subtype were the highest (Figure S3A, Table S4). The 
Treg-C2-TNFRSF9 subtype was enriched in MI 
tumour samples, while the CD8T-C1-GZMK and 
CD8T-C2-IFNG clusters were predominantly found in 
NMI tumours and normal samples (Figure 3C and 
3D). Pseudotime trajectory analysis revealed the 
diversification and developmental dynamics of CD8+ 
and CD4+ T cells (Figure 3E and 3F). The 
CD8T-C3-LAG3 subpopulation, characterized by high 
expression of exhausted markers such as PDCD1, 
HAVCR2, and LAG3 (Figure 3B), was located at the 
terminal end of the pseudotime and was enriched in 
pathways related to the PD-1 checkpoint, type II 
interferon production, and T-cell negative regulation. 
According to the results of Ro/e distribution analysis, 
the CD8T-C3-LAG3 subtype was found to be 
preferentially enriched in MI basal tumour samples 
(Figure 3D). The Treg-C2-TNFRSF9 subtype, which 
highly expresses costimulatory signatures (TNFRSF9, 
TNFRSF18, ICOS, and CTLA4), was found to be 
associated with the regulation of immune effector 
pathways and the Rap1 signalling pathway. These 
findings suggest that the immunosuppressive 
microenvironment may drive tumour progression 
towards MI. To validate the T-cell states across 
different tumour subgroups in the above analysis, we 
used the deconvolution algorithm BayesPrism [27] to 
analyse T-cell subtype abundance in bulk RNA 
sequencing data from the TCGA-BLCA and the 
UROMOL 2020 cohort, as well as the in-house 
IUPU-UC cohort. Interestingly, we detected a strong 
negative correlation between the frequency of 
CD8T-C3-LAG3 and CD8T-C2-IFNG in both cohorts 
(Figure 3G). The frequencies of CD8T-C3-LAG3 (P < 
0.001) and Treg-C2-TNFRSF9 (P < 0.001) were 
significantly greater in MI basal tumour samples than 
in MI luminal and NMI samples (Figure 3H, 3I). In 
addition, KM analysis revealed that patients with a 
high degree of CD8T-C3-LAG3 infiltration exhibited 
worse overall survival (OS) in both the TCGA-BLCA 
cohort (P = 0.0017) (Figure 3J) and the IUPU-UC 
cohort (P = 0.045) (Figure 3K). No significant 
difference in prognosis was observed between 
patients with high and low levels of Treg-C2- 
TNFRSF9 infiltration in thee TCGA-BLCA cohort (P = 
0.49) (Figure S3B), whereas patients with high levels 
of Treg-C2-TNFRSF9 infiltration had worse OS in the 
in-house UC cohort (P = 0.0079) (Figure S3D). 
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Figure 3. Diversity and dynamics of T and NK cells during UC progression. (A) UMAP plot of all T and NK cells, colored by ten distinct cell subsets. (B) Heatmap depicting the 
expression of function-associated signature genes used to define T and NK cells, with color intensity indicating normalized expression levels. (C) Cell fractions (as percentages) 
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and cell numbers of T and NK cell subsets stratified by molecular subtypes. (D) Heatmap of Ro/e values for T and NK cell subsets across molecular subtypes. (E, F) Heatmaps 
displaying dynamic changes in gene expression of CD8+ T cells (E) and CD4+ T cells subsets (F). Normalized gene expression levels and pseudotimes were indicated by color 
gradients (upper). Gene expression profiles were hierarchically clustered (left), with enriched GO and KEGG pathway terms shown on the right. (G) Heatmap illustrating 
Spearman correlations among the relative abundances of T and NK cell subsets across the TCGA-BLCA, UROMOL2020, and in-house IUPU-UC cohorts. Cell abundances were 
inferred using the deconvolution algorithm BayesPrism. Correlation coefficients are represented by the color scale. (H, I) Box plots comparing the estimated infiltration 
proportions of CD8T-C3-LAG3 (H) and Treg-C2-TNFRSF9 (I) across the molecular subtypes. Colored dots represent individual samples. (J, K) Kaplan-Meier survival analysis of 
the overall survival (OS) of patients in the TCGA-BLCA (J) and in-house IUPU-UC (K) cohorts, stratified by high versus low signature scores of CD8T-C3-LAG3. 

 
Currently, the classification of exhausted CD8+ T 

cells (CD8Tex) is not completely understood, as 
several studies have identified three distinct subsets 
in the tumour microenvironment: progenitor, 
intermediate, and terminally exhausted subsets [36]. 
In this study, ROGUE index analysis [37] revealed 
lower cell purity in the CD8T-C3-LAG3 subset than in 
other CD8+ T cell subsets (Figure S3D), which 
indicates a high degree of heterogeneity among 
CD8Tex cells. To elucidate this heterogeneity, we 
further stratified CD8Tex cells into three subsets 
(Figure S3E). One cluster, which was characterized by 
high expression of GZMK, CD44, and ICOS, and the 
highest cytoTRACE scores (Figure S3F and S3G), was 
designated as CD8Tex-Prog, representing a 
progenitor-like state of CD8+ T cell exhaustion. The 
remaining two subsets exhibited upregulation of 
exhaustion-associated markers (Figure S3G). Among 
them, one subset that displayed markedly higher 
expression of terminal exhaustion markers, including 
CTLA4, TIGIT, BATF, CXCL13 and PRDM1, and 
significantly elevated terminal exhaustion scores (P < 
0.001), was defined as CD8Tex-Term (terminally 
exhausted cells) (Figure S3G and S3H). The final 
subset, characterized by an intermediate exhaustion 
state, was termed CD8Tex-Int. We observed that 
CD8Tex-Prog cells were relatively enriched in normal 
tissues, whereas CD8Tex-Int and CD8Tex-Term cells 
were more abundant in tumour samples (Figure S3I). 
Furthermore, KM survival curves revealed that 
patients with a high degree of CD8Tex-term 
infiltration had significantly worse OS in both the 
TCGA-BLCA cohort (P=0.0014) (Figure S3J) and the 
in-house cohort (P=0.049) (Figure S3K). 

Deciphering myeloid cell states associated 
with UC progression 

The increased infiltration of myeloid cells in MI 
tumour samples suggests that these cells may 
promote tumour progression (Figure 1E, 1F). 
Following reclustering analysis, we identified ten 
distinct myeloid subsets. On the basis of differentially 
expressed genes, these subsets were classified into 
five major categories: macrophages (macro) (C1–C4), 
monocytes, dendritic cells (DCs) (C1–C3), neutrophils 
and mast cells (Figure 4A, 4B). The myeloid subsets 
exhibited distinct distribution patterns across 
pathological and molecular subgroups. Cells in the 
DC-C1 cluster, characterized by high expression of 

XCR1 and IRF8, were identified as conventional type 
1 dendritic cells (cDC1s) and were predominantly 
enriched in NMI tumour samples. In contrast, cells in 
the DC-C2 cluster, which expressed high levels of 
CD1c and CLEC10A, corresponded to conventional 
type 2 dendritic cells (cDC2s), the distribution of 
which did not significantly differ across the 
subgroups (Figures 4C and 4D). Cells in the DC-C3 
cluster, uniquely express GZMB, and along with 
neutrophils, were increased in MI basal tumour 
samples (Figure 4D). 

Macrophage infiltration was elevated in tumour 
samples (Figure 4D), which highlights their pivotal 
role in tumorigenesis and tumour progression. The 
functional heterogeneity of tumour-associated 
macrophages (TAMs) is underscored by their distinct 
phenotypic subsets, commonly categorized into 
antitumour M1 (classically activated) and protumour 
M2 (alternatively activated) polarization states [38]. In 
this study, we identified four TAM subclusters: 
Macro-C1-IL1B, Macro-C2-MCR1, Macro-C3-SPP1, 
and Macro-C4-S100A9 (Figures 4A, 4B and S4A). 
Analysis of M1 and M2 polarization signatures (Table 
S4) scores revealed that Macro-C1-IL1B had elevated 
M1 scores (P < 0.001), whereas Macro-C2-MCR1 (P < 
0.001) and Macro-C3-SPP1 (P < 0.01) had higher M2 
scores (Figures 4E and S4B). Among these subsets, 
Macro-C4-S100A9 demonstrated the greatest 
developmental potential (P < 0.001) (Figure S4C), 
potentially indicating a polarization-quiescent or 
M0-like state. Macro-C3-SPP1 was enriched in 
oxidative phosphorylation and PPAR signalling 
pathways, whereas Macro-C1-IL1B was 
predominantly associated with inflammatory 
pathways such as NF-κB and TNF signaling (Figures 
4F, S4D, S4E). Augur [39] analysis revealed that 
Macro-C3-SPP1 was prioritized in MI tumour samples 
(Figure 4G). Furthermore, in the TCGA-BLCA cohort, 
increased infiltration of Macro-C3-SPP1 and 
Macro-C2-MCR1 was significantly correlated with 
reduced overall survival rates (P < 0.001 and P = 
0.0019, respectively) (Figure 4H). Collectively, these 
findings suggest that the enrichment of 
Macro-C3-SPP1 may play a critical role in promoting 
muscle invasion in UC. 

Cellular heterogeneity of stromal cells in UC 
Stromal cells play crucial roles in the tumour 

microenvironment. To determine their cellular 
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heterogeneity, a total of 29,573 stromal cells were 
extracted for reclustering. COL1A1+ stromal cells 
were categorized into four major clusters: cancer- 
associated fibroblasts (fib), identified by high 
expression of PDGFRA, were further divided into four 
subgroups (Figure 5A, S5A). Myofibroblasts 

(myoFib), defined by high RGS5 expression [12], can 
be further categorized into two subtypes: 
myoFib-MUSTN1 and myoFib-LAMA3. Pericytes, 
characterized by high expression of KCNJ8 [40], were 
further classified into two subsets: pericytes-EGFL6 
and pericytes-STEAP4 (Figure 5A, S5A).  

 
 

 
Figure 4. Characterization of subclusters and function profiles of myeloid cells in UC. (A) UMAP plot of myeloid cells, colored by ten subclusters. (B) Bubble plot showing 
differentially expressed genes across myeloid subsets. Dot size represents the proportion of cells expressing the gene, and color indicates the average normalized expression 
level. (C) Bar plot showing proportional abundances (percentages) of myeloid cell subsets across pathological and molecular subtypes. (D) Heatmap of Ro/e values for myeloid 
clusters across molecular subtypes. (E) Cumulative distribution plots of M1 and M2 polarization scores across four macrophage clusters, accompanying box plots show the score 
distributions per cluster. Statistically significant p-values are indicated by asterisks (**P ≤ 0.01, ***P ≤ 0.001). (F) Gene set enrichment analysis (GSEA) of pathways enriched in 
macro-C3-SPP1 cells compared to macro-C2-ILB cells. (G) Lollipop chart of the area under the curve (AUC) scores from Augur analysis across four macrophage subclusters, 
highlighting cell type prioritization between muscle-invasive (MI) and non-muscle-invasive (NMI) groups. (H) Kaplan-Meier survival curves for overall survival (OS) of patients in 
the TCGA-BLCA cohort, stratified by high versus low infiltration of macro-C2-MRC1 (left) and macro-C3-SPP1 (right). Statistical significance was determined using the log-rank 
test. 
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Figure 5. Cellular heterogeneity of stromal cells. (A) UMAP showing the COL1A1+ stromal cells, colored by nine subclusters. (B) Heatmap of Ro/e values for fibroblast 
subclusters across pathological and molecular subtypes. (C) Heatmap showing the GSVA enrichment scores for hallmark pathways across COL1A1+ stromal cell subclusters. (D) 
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UMAP illustrating the developmental trajectories of fibroblasts across subclusters. (E) Volcano plot showing differentially expressed genes in fibroblasts between muscle-invasive 
(MI) and non-muscle-invasive (NMI) samples. (F) Lollipop chart showing area under the curve (AUC) scores from the Augur analysis, highlighting cell type prioritization among 
fibroblast subclusters between MI and NMI samples. (G) Kaplan-Meier survival curves for overall survival (OS) in the TCGA-BLCA cohort, stratified by high versus low infiltration 
of fib-GREM1. Statistical significance was determined using the log-rank test. (H) UMAP plot showing endothelial cells, colored by six subclusters. (I) Heatmap of Ro/e values for 
endothelial clusters across pathological and molecular subtypes. (J) UMAP showing endothelial cells, colored by tip-like and stalk-like scores. (K, L) Violin plots showing the 
tip-like (K) and stalk-like (L) scores across the normal, NMI and MI samples. 

 
Fib-APOD, which was observed primarily in 

normal tissues (Figure 5B), was enriched in 
complement and coagulation pathways (Figure 5C), 
and was associated with the upregulation of genes 
associated with tissue regeneration and proliferation, 
including APOD and IGF1 (Figures S5A, S5C). This 
subcluster closely resembled the COL15A1⁺ fibroblast 
progenitors described by Gao et al. [33]. A 
bidirectional differentiation trajectory was observed 
in fibroblasts, which transitioned from a Fib-APOD 
phenotype to an inflammatory and interferon- 
regulated phenotype (Figure 5SB, 5D). Fib-BMP5 was 
found mainly in the tumour samples, and was 
characterized by the elevated expression of SLC14A1, 
NRG1, and WNT5A (Figures S5A and S5C). This 
subcluster was likely induced by interferon response 
signalling (Figure 5C) and has been reported to be 
linked to poor clinical outcomes [41]. Fib-GREM1, 
which was enriched mainly in MI basal tumour 
samples, exhibited characteristics associated with 
inflammatory responses and epithelial–mesenchymal 
transition, which highlights its immunoregulatory 
functions. Moreover, this subcluster underwent 
metabolic reprogramming characterized by increased 
hypoxia and glycolysis, reflecting its specialized 
adaptations to the tumour microenvironment. 
Notably, elevated GREM1 expression has been 
observed in fibroblasts across various carcinomas, 
where it contributes to tumour cell proliferation and 
invasion [42]. Consistently, GREM1 expression was 
upregulated in fibroblasts from MI samples, and 
Augur analysis confirmed the preferential enrichment 
of Fib-GREM1 in MI tumors (Figure 5E and 5F). 
Additionally, a higher Fib-GREM1 score was 
significantly associated with reduced overall survival 
rates (P = 0.025) (Figure 5G). 

Endothelial cells (ECs) and mural cells are the 
main components of the vasculature. Angiogenesis, a 
critical hallmark of cancer, is driven by the migration 
of tip cells and the proliferation of endothelial 
progenitor cells, which promote the sprouting of new 
blood vessels into the tumour microenvironment [25]. 
In our analysis, ECs were categorized into lymphatic 
and vascular ECs, and the latter were further divided 
into one arterial, two venous (venous-CSF3 and 
venous-HMOX1), and two capillary (capillary- 
SLC3A2 and capillary-RGCC) EC subsets (Figure 5H 
and S5D). Notably, compared with normal tissues, 
capillary-RGCC ECs were enriched in tumour 

samples and exhibited upregulated expression of 
genes associated with the G2M checkpoint, the mitotic 
spindle, and Wnt/β-catenin signalling (Figure 5I and 
S5E). Interestingly, we found that lymphatic ECs were 
enriched only in MI basal tumour samples (Figure 5I). 
To further elucidate the role of ECs in muscle-invasive 
progression, we assessed EC phenotypes based on the 
tip and stalk cell gene signatures [25] (Figure 5J, Table 
S4). Among the EC subsets, capillary-RGCC ECs 
displayed the highest tip-like scores but the lowest 
stalk-like scores (P < 0.001 and P = 0.0019, 
respectively) (Figure S5F and S5G). Moreover, MI 
tumour tissues were significantly enriched in tip-like 
ECs (P < 0.001), whereas ECs in NMI tumuor tissues 
exhibited higher stalk-like scores (P < 0.001) (Figure 
5K and 5L), which suggests a phenotypic shift in ECs 
associated with progression to MI UC. 

Interferon-γ signalling drives MHC-II 
expression in cancer cells  

Cancer cells harbouring MP5 status exhibited 
high expression of genes associated with MHC-II 
antigen presentation and the interferon response. To 
further investigate the epithelial–immune dual 
feature of these cells, we stratified them into MHC-II+ 
and MHC-II− subgroups according to their 
coexpression of four canonical MHC-II-related genes 
(HLA-DRA, HLA-DRB1, HLA-DPA1, and HLA-DPB1) 
(Figure 6A). Cells that exhibited detectable expression 
(expression level > 0) of all four genes were classified 
as MHC-II+, while the remaining cells were 
designated MHC-II−. This binary classification 
yielded a robust separation: MHC-II⁺ cancer cells 
consistently expressed all the selected MHC-II genes, 
whereas MHC-II⁻ cells expressed almost none of these 
genes (Figure 6B). As expected, MHC-II+ cancer cells 
exhibited high expression of MP5 and basal 
phenotype gene signatures but low expression of 
luminal phenotype gene signatures (Figure S6A-C). 
The proportion of MHC-II+ cancer cells was the lowest 
in the NMI group but it was significantly greater in 
the MI basal group (P=0.029) (Figure 6C and 6D). 
Differential gene expression and gene ranking 
analyses revealed that the expression of CD74, 
HLA-DRA, HLA-DRB1, and FXYD3 was elevated in 
MHC-II⁺ cancer cells, whereas the expression of 
LOXL2 and DLL4 was increased in MHC-II⁻ cancer 
cells (Figure S6D).  
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Figure 6. IFN-γ signalling drives the expression of MHC-II on cancer cells. (A) UMAP visualization of cancer cells, colored by the expression levels of four MHC-II genes. (B) Dot 
plot showing expression of all MHC-II molecule genes in MHC-II+ and MHC-II− cancer cells. (C) Proportional abundance (percentage) of cancer cell subsets across pathological 
and molecular subtypes. (D) Comparison of the average percentage of MHC-II+ cancer cells across pathological and molecular subtypes. (E) Immunofluorescence staining of 
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nuclei (DAPI, blue), pan-cytokeratin (pan-CK) (green), HLA-DRA (red), and CD68 (gray) in non-muscle-invasive (NMI) and muscle-invasive (MI) UC tumors. Colocalization of 
pan-CK and HLA-DRA appears yellow in merged images (white arrows). (F, G) Heatmaps of pathway activity scores from PROGENy analysis in cancer cells, grouped by MHC-II 
expression (F) and by pathological and molecular subtype (G). (H) PROGENy analysis of JAK/STAT pathway activity in spatial transcriptomic sections. (I) Western blot analysis 
of HLA-DRA expression in T24 cells treated with IFN-γ (0, 5, 10, 20 ng/mL) for 72 hours. (J) Volcano plot showing differentially expressed genes between T24 cells treated with 
or without IFN-γ (10 ng/ml). (K) Western blot analysis of T24 (left) and 5637 (right) cell lines demonstrates that IFN-γ–induced HLA-DRA expression is mediated through the 
JAK1/STAT1 signaling. IFN-γ–induced increases in JAK1 and STAT1 phosphorylation, as well as the expression of total STAT1 and HLA-DRA were suppressed by treatment with 
the JAK1/2 inhibitor ruxolitinib. 

 
To validate the dual epithelial–immune feature 

of MHC-II+ cancer cells, we performed multiple 
immunofluorescence staining in UC tissues and 
confirmed the coexpression of epithelial markers 
(pan-CK) and HLA-DRA in single cancer cells from 
MI tumours (Figure 6E). As professional 
antigen-presenting cells, dendritic cells, B cells, and 
macrophages constitutively express MHC-II 
molecules along with the classical costimulatory 
molecules such as CD80 and CD86, both of which are 
essential for CD4+ T-cell activation [43]. Therefore, 
although they express MHC-II molecules, MHC-II⁺ 
cancer cells lack CD86 expression (P < 0.001) (Figure 
S6E), rendering them incapable of effectively 
activating CD4⁺ T cells.  

To explore the regulatory mechanisms 
underlying the generation of MHC-II+ cancer cells, we 
performed pySCENIC analysis. The results revealed 
that key transcription factors of the IFN-γ signalling 
pathway, including STAT1 and IFR1, exhibited 
increased activity in MHC-II+ cancer cells (Figure 
S6F). PROGENy analysis revealed that JAK/STAT 
signalling was the most prominently activated 
pathway in MHC-II⁺ cancer cells (Figure 6F). In 
addition, cancer cells within the MI basal subgroup 
demonstrated the highest level of JAK/STAT 
pathway activity among all the subgroups (Figure 
6G). Spatial transcriptomic analysis confirmed 
elevated JAK/STAT pathway activity in MI basal 
tumors (Figure 6H). In addition to IFN-γ 
response-associated genes (JAK1, STAT1 and STAT3), 
CIITA, a master regulator of MHC-II gene expression, 
was highly expressed in MHC-II⁺ cancer cells (Figure 
S6G, S6H). Notably, these cells exhibited greater 
differentiation potential than did their MHC-II⁻ 
counterparts (P < 0.001) (Figure S6I), which suggests a 
link between IFN-γ signalling and cancer cell 
plasticity. Given these findings, we hypothesized that 
IFN-γ-mediated JAK/STAT activation drives 
MHC-II⁺ cancer cell induction. In support of this 
finding, we observed that CD8⁺ T cells in MI tumours, 
especially those in the MI basal group, exhibited 
elevated IFNG expression (Figure S6J). This finding 
was further validated in CD8⁺ T-cell subsets 
(CD8T-C2-IFNG cells) (Figure S6K). These findings 
suggest that IFN-γ secretion by CD8⁺ T cells may 
promote MHC-II expression in cancer cells, thus 
shaping their immune interactions and differentiation 
trajectories. 

We evaluated the expression levels of MHC-II 
molecules across 37 bladder cancer cell lines. Our 
results revealed that most of these cell lines exhibited 
low MHC-II expression (Figure S7A). Among them, 
T24 and 5637—both classified as the basal subtype— 
showed minimal expression of HLA-DRA. However, 
in vitro stimulation with IFN-γ at concentrations 
above 10 ng/mL significantly upregulated HLA-DRA 
expression in these cell lines (Figures 6I and S7B). 
Transcriptomic analysis further confirmed that IFN-γ 
stimulation activated relevant signalling pathways, 
including the IFN-γ response and the JAK/STAT 
pathway, leading to increased expression of 
MHC-II-related molecules such as HLA-DRA, CD74, 
IRF1, and STAT1 (Figures 6J, S7C–S7G). To further 
validate that IFN-γ–induced MHC-II expression is 
mediated by the JAK/STAT pathway, we treated T24 
and 5637 cells with the selective JAK1/2 inhibitor 
ruxolitinib. Western blot analysis revealed that IFN-γ 
stimulation increased the phosphorylation of JAK1 
and STAT1, as well as the total STAT1 protein level, 
whereas these effects were markedly attenuated by 
treatment with ruxolitinib (Figure 6K). 

MHC-II⁺ cancer cells predict poor prognosis 
and contribute to tumour progression 

We next assessed the prognostic relevance of 
MHC-II⁺ cancer cells in UC patients. KM analysis of 
the TCGA-BLCA cohort revealed that patients with a 
high MHC-II⁺ cancer cell signature score had 
significantly shorter OS (P = 0.047; Figure 7A). 
Multivariate Cox regression analysis revealed both 
lymphovascular invasion (LVI) (HR = 2.48; 95% CI: 
1.14–5.37; P = 0.022) and a high MHC-II⁺ cancer cell 
signature score (HR = 4.81; 95% CI: 1.08–21.31; P = 
0.039) as independent predictors of poor prognosis 
(Figure 7B). However, no significant association 
between the MHC-II⁺ cancer cell signature score and 
OS was observed in the IUPU-UC cohort based on 
either KM or multivariate Cox analysis (Figure 7C and 
S8A), which may be due to the limited sample size. In 
the IMvigor210 cohort, a high MHC-II⁺ score was 
associated with shorter OS without reaching statistical 
significance (P = 0.11; Figure S8B), but significantly 
correlated with better progression-free survival (P = 
0.043; Figure 7D). Furthermore, although the 
difference was not statistically significant, higher 
MHC-II⁺ scores were observed in responders to 
anti-PD-L1 therapy than in non-responders (Figure 
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S8C, D). These findings suggest a potential role for 
MHC-II⁺ expression as a predictive biomarker for 
immunotherapy, which warrants further 
investigation. 

Given the prognostic impact of MHC-II⁺ cancer 
cells, we sought to characterize their distribution and 
function. Cell type deconvolution analysis revealed a 
significant enrichment of MHC-II⁺ cancer cells in MI 
basal tumours (P<0.001; Figure S8E). Functionally, 
MHC-II⁺ cancer cells exhibited higher proliferation (P 
= 0.042) and migration (P < 0.001) signature scores 
(Figures 7E and 7F; Table S4). Consistently, over-
expression of HLA-DRA increased the proliferative 
capacity of T24 and 5637 cancer cells, as confirmed by 
CCK-8 (Figure 7G) and colony formation assays 
(Figure 7H). Moreover, as shown in wound healing 
(Figure 7I) and Transwell assays (Figures 7J and7K), 
HLA-DRA overexpression significantly promoted 
cancer cell migration and invasion. Taken together, 
these results suggest that elevated MHC-II expression 
on cancer cells may facilitate tumour progression. 

MHC-II⁺ cancer cells form spatial niches with T 
cells and SPP1+ macrophages  

To further assess the spatial relationships of 
MHC-II⁺ cancer cells, we employed the cell2location 
model along with cell-type specific expression profiles 
derived from our scRNA-seq dataset to deconvolute 
cell-type abundances across eight UC tissue sections 
(Table S2). Our analysis revealed that MHC-II⁺ cancer 
cells were less frequently observed in NMI and MI 
luminal samples (Figure 8A–C), whereas their 
distribution was markedly increased in MI basal 
samples (Figure 7D–F). Notably, MHC-II⁺ cancer cells 
preferentially colocalized with CD8⁺ T cells in MI 
basal samples (Figure 7D-F), which suggests that 
CD8⁺ T cells may play a pivotal role in driving the 
production of MHC-II⁺ cancer cells. To quantitatively 
assess the spatial relationships between cell subsets, 
we applied the Kullback–Leibler (KL) divergence 
analysis [33]. Both density plots and heatmaps 
consistently revealed that MHC-II⁺ cancer cells 
exhibited greater spatial similarity and pronounced 
colocalization with CD8⁺ T cells and Tregs in MI basal 
tumours, as reflected by lower KL divergence values 
(Figure 8A–F and S9A–F). 

In the NMI and MI luminal phenotype sections, 
immune cells were predominantly localized at the 
periphery of cancer cell regions (Figure 8A–C). 
However, in MI basal phenotype tissues, immune 
cells infiltrated deeper into the central regions of 
cancer cells (Figure 8D–F). We then applied NMF to 
the cell subcluster abundances inferred from 
cell2location across all tissue sections to identify 
spatial co-occurrence patterns, which provided 

insights into potential cellular interactions. Our 
analysis revealed that MHC-II⁺ cancer cells 
colocalized with CD8T-C2-IFNG, macro-C3-SPP1, 
and Treg-C2-TNFRSF9 in MI basal sections (Figure 
8G, S9G–K). 

To further investigate the colocalization 
dynamics within individual spots as well as across 
adjacent spots, we utilized the MISTy algorithm to 
analyse the spatial neighbourhood of cell subclusters 
across all tissue slides. Comparing the MI UC slides 
with the NMI UC slides, we observed that MHC-II⁺ 
cancer cells were indeed predicted to be colocalized 
with CD8T-C2-IFNG, macro-C3-SPP1, and Treg-C2- 
TNFRSF9, and vice versa (Figure 8H). However, in the 
NMI UC slides, we observed a notable decrease in the 
association between CD8T-C2-IFNG and Treg-C2- 
TNFRSF9 (Figure 8H). The observed shift in spatial 
associations in MI tissue slides may suggest 
alterations in immune cell dynamics that contribute to 
the distinct tumour microenvironment characteristics 
of these subtypes. 

MHC-II⁺ cancer cells shape the 
immunosuppressive landscape in UC 

To investigate the role of MHC-II⁺ cancer cells in 
the tumour microenvironment, we used CellPhoneDB 
to analyse their interaction networks with various 
identified cell subtypes in our study. MHC-II⁺ cancer 
cells significantly interact with fibroblasts, 
macrophages, endothelial cells, and T cells (Figure 
9A). Chemokines such as CXCL14, CXCL16, and 
CCL20, expressed by MHC-II⁺ cancer cells, mediate 
interactions with exhausted CD8⁺ T cells and Tregs 
(Figure 9B, S10A), and contribute to the 
immunosuppressive microenvironment [44, 45]. 
Additionally, the interactions between chemokines, 
including CXCL1, CXCL8, and CCL2, and ACKR1, 
expressed by endothelial cells, were notably greater in 
MHC-II⁺ cancer cells than in MHC-II⁻ cancer cells 
(Figure 9B and S10A). ACKR1 acts as a decoy receptor 
for these chemokines, promoting angiogenesis and 
enhancing pro-malignant effects [46]. Furthermore, 
the regulatory network of MHC-II⁺ cancer cells 
revealed interactions between PVR and coinhibitory 
receptors including TIGIT and CD96, which induce 
CD8+ T-cell exhaustion and Treg activation, and 
subsequently facilitate immune evasion [47]. The 
increased expression of CD47 on MHC-II⁺ cancer cells 
further promoted interactions with SIRPα on 
macrophages, to a greater extent than that observed in 
MHC-II⁻ cancer cells (Figure 9C, S10B, S10C). This 
interaction inhibits phagocytosis and prevents the 
engulfment of cancer cells [48]. Similar interactions 
were observed with SIPRγ on exhausted CD8⁺ T cells 
and Tregs (Figure S10B). 
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Figure 7. MHC-II+ cancer cells predict poor prognosis and promote tumor aggressiveness. (A) Kaplan–Meier survival curves for overall survival (OS) of patients in the 
TCGA-BLCA cohort, stratified by high versus low MHC-II+ cancer cell score. (B) Multivariate cox regression analysis of MHC-II+ cancer cells signature score and 
clinicopathologic factors in the TCGA-BLCA cohort, identifying lymphovascular invasion (LVI) and high MHC-II⁺ cancer cell scores as independent risk factors. (C) Kaplan–Meier 
curves of OS in the IUPU-UC cohort stratified by high versus low MHC-II⁺ cancer cell signature scores. (D) Kaplan–Meier curves of progression-free survival (PFS) in the 
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IMvigor210 cohort stratified by high versus low MHC-II⁺ cancer cell signature scores. (E, F) Violin plots showing the proliferation (E) and migration (F) signature scores across 
cancer cell subsets in the scRNA-seq dataset. (G, H) CCK8 proliferation assay (G) and colony formation assay (H) showing the proliferation ability of T24 and 5637 cells with 
HLA-DRA overexpression. (I-K) Wound healing (I), Transwell migration (J) and Transwell invasion (K) assays demonstrating enhanced migration and invasion abilities of T24 and 
5637 cells with HLA-DRA overexpression. scale bar, 50 μm. AJCC, American Joint Committee on Cancer. 

 
Figure 8. Spatial colocalization of MHC-II⁺ cancer cells with immune cells. (A-F) Spatial mapping of major cell types (left) and individual cell subsets (right) onto transcriptomics 
slides from UTUC (A–D) and UCB (E–F) tissues using cell2location, with color intensity indicating cell abundance. Below each panel (A–F), density plots display Kullback–Leibler 
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(KL) divergence distributions, reflecting the degree of spatial association between MHC-II⁺ cancer cells and immune cell subsets. Each immune subset is represented by a dot 
along the KL axis; a position closer to zero indicates stronger colocalization with MHC-II⁺ cancer cells. Specifically, the UCB01 and UCB03 samples (E and F) were obtained from 
the publicly available dataset (GSE171351). (G) Identification of cell compartments using non-negative matrix factorization (NMF) in UCB01 tumor sections. Normalized weights 
of each cell type across NMF components are shown, with color intensity indicating the weight values. (H) MISTy-based estimation of cell cluster cooccurrence within spots 
across all slides, comparing muscle-invasive (MI) and non-muscle-invasive (NMI) UC samples. 

 
Figure 9. Interaction networks between MHC-II+ cancer cells and immune cells/fibroblasts. (A) Heatmap showing the number of the ligand–receptor pairs inferred by 
CellPhoneDB among major cell subsets. (B, C) Bubble plots showing ligand–receptor interactions involved in chemokine signaling (B) and costimulatory/coinhibitory molecules 
between cancer cells, T cells, macrophages, fibroblasts, and endothelial cells. Circle size indicates the -log10(p-value), and color represents the mean expression level. (D, E) Chord 
diagrams illustrating differential ligand-receptor interactions between MHC-II+ cancer cells and immune cells (D) or fibroblasts (E), in muscle-invasive (MI) versus 
non-muscle-invasive (NMI) UC samples. Arrowheads indicate interaction direction from sender to receiver cell; arrow color corresponds to the ligand-expressing sender cell 
type. 

 
Next, we used MultiNicheNet to compare the 

cell‒cell interaction between the cell components of 
the MI and NMI groups. In the MI group, we detected 
significant interactions between macro-C3-SPP1 and 

MHC-II⁺ cancer cells via the EREG/ERBB4 axis 
(Figure 9D, S10D), which activates downstream 
MEK/ERK and PI3K/AKT signalling pathways, 
promoting cell proliferation and survival [49]. In 
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addition, we observed increased interactions between 
macro-C3-SPP1 and Treg-C2-TNFRSF9 through the 
SPP1-ITGA4 axis in the MI group (Figure 9D, S10D), 
which could facilitate the adhesion and migration of 
activated Tregs within the tumour microenvironment, 
potentially contributing to immune suppression and 
tumour progression [50]. Furthermore, in the MI 
group, fib-GREM1 was observed to significantly 
interact with MHC-II⁺ cancer cells through the 
COL1A1-ITGA2 and IL24-IL20RB axes (Figure 9E), 
both of which are known to promote cancer cell 
stemness and support tumour aggressiveness. 

Discussion 
In this study, we utilized a large-scale integrated 

scRNA-seq dataset to systematically characterize the 
intratumoral cellular heterogeneity and intertumour 
differences in UC, and we provide a comprehensive 
analysis of diverse cell populations and their 
functional states. A recent scRNA-seq study has 
demonstrated that although UTUC and UCB share 
similar cellular compositions, they harbour distinct 
functional cell subsets [15]. Notably, UTUC is 
associated with a unique immunosuppressive 
microenvironment characterized by CD8+ T-cell 
exclusion and M1 macrophage expansion. However, 
these findings were limited by insufficient 
consideration of tumour stage variations and a 
constrained sample size, as only three UTUC cases 
were analysed, which may have affected the 
robustness and generalizability of the conclusions. 
Consistently, our analysis revealed a comparable 
distribution of major cell types between UCB and 
UTUC. However, the upregulation of the expression 
of genes associated with immunosuppression, such as 
CTLA-4, was not observed in UTUC. These 
differences between UTUC and UCB at single-cell 
resolution highlight the need for further 
investigations through larger-scale studies to validate 
these observations and determine their clinical 
implications. 

Cancer cell plasticity enables phenotypic and 
functional shifts that drive tumor initiation, 
progression, metastasis, and therapeutic resistance 
[51]. Our analysis revealed an epithelial–immune 
hybrid gene expression program (MP5) in cancer cells, 
characterized by the coexpression of interferon 
response genes and MHC-II components (Figure 2F). 
This program was positively associated with T-cell 
infiltration, the basal tumour phenotype, and an 
immune-inflamed microenvironment. Notably, this 
epithelial–immune dual feature was predominantly 
observed in cancer cells of MI UC tumors, particularly 
those of the basal subtype, and no significant 
differences were observed between UTUC and UCB.  

Furthermore, we dichotomized cancer cells 
according to their MHC-II expression status, and 
revealed that the transcriptomic profile of MHC-II⁺ 
cancer cells was consistent with that of MP5 (Figure 
S6B). While MHC-II molecules are typically expressed 
on professional antigen-presenting cells, such as 
macrophages and DCs, their aberrant expression on 
cancer cells has been increasingly recognized. 
However, the functional implications of cancer 
cell-intrinsic MHC-II expression remain controversial. 
Although previous studies have linked cancer 
cell-specific MHC-II expression to a favourable 
prognosis in multiple cancer types including colon 
cancer [52], breast cancer [53], and melanoma [54], 
recent scRNA-seq analyses have suggested a 
contrasting role. Jin et al. [55] reported that HLA-DRhi 
tumour cells in nasopharyngeal carcinoma 
contributed to CD8⁺ T-cell exhaustion and tumour 
progression by upregulating co-inhibitory receptors 
on infiltrating T cells. Similarly, Lei et al. [56] reported 
that MHC-II⁺ cancer cells induced Treg expansion 
while reducing CD4⁺ effector T cells in 
tumour-draining lymph nodes of patients with breast 
cancer, thereby facilitating metastasis and immune 
evasion. Another scRNA-seq study [57] demonstrated 
that MHC-II expression in alpha-fetoprotein-positive 
hepatocellular carcinoma is associated with immune 
dysfunction, including T-cell exhaustion and the 
accumulation of tumour-promoting macrophages. 

 We investigated the generation of MHC-II+ 
cancer cells and their role in the tumour 
microenvironment of UC. Our analysis revealed an 
upregulation of the IFN-γ response and JAK/STAT 
pathway in MHC-II⁺ cancer cells (Figure 6F, S6H). 
IFN-γ, which is typically produced by NK cells and 
CD8⁺ cytotoxic T cells, exerts pleiotropic effects in the 
tumour microenvironment, and its impact is 
dependent on the duration and magnitude of 
signalling [58]. The immunosuppressive landscape of 
MI UC tissues, characterized by an ineffective T-cell 
response (Figure 3D, 3H), may enable prolonged 
IFN-γ exposure, thereby inducing MHC-II expression 
in cancer cells, as validated by in vitro IFN-γ treatment 
(Figure 6I-K, S7B-G).  

Although MHC-II⁺ cancer cells constitute 
approximately 20% of MI basal tumours (Figure 6C 
and 6D), they may have a disproportionate functional 
effect on the tumour microenvironment. Increased 
expression of MHC-II molecules on cancer cells has 
also been observed in other advanced malignancies, 
including metastatic lymph nodes of breast cancer 
[56] and high-grade serous ovarian cancer [59]. These 
findings suggest that a subcluster of cancer cells with 
elevated MHC-II expression may emerge under 
selective immune pressure, potentially contributing to 
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immune modulation and tumour progression. In our 
study, MHC-II⁺ cancer cells were spatially colocalized 
with both CD8⁺ T cells and Tregs (Figure 8A-F), which 
indicates potential cellular interactions that may drive 
CD8⁺ T-cell exhaustion and facilitate immune evasion. 
In support of this, coculture experiments have shown 
that HLA-DRhi cancer cells upregulate the inhibitory 
receptor expression on CD8⁺ T cells, including PD-1, 
LAG-3, and TIM-3 [55]. Additionally, MHC-II+ cancer 
cells have been reported to promote immune 
tolerance via Treg differentiation and expansion [56]. 
Although the absence of costimulatory signals 
prevents the direct activation of T cells, our study 
revealed that MHC-II⁺ cancer cells exhibit 
upregulated CD47 expression (Figure S10C), which 
enhances their interaction with SIRPα on 
macrophages (Figure 9C) and transmits a "don't eat 
me" signal that inhibits phagocytosis. By evading 
macrophage-mediated clearance, MHC-II⁺ cancer 
cells may facilitate immune escape; however, further 
research is needed to validate and clarify the 
mechanism. 

In addition to their role in immune regulation, 
MHC-II⁺ cancer cells may also contribute to tumour 
progression through phenotypic changes. 
Overexpression of HLA-DRA in vitro enhanced cancer 
cell proliferation and migration (Figure 7G-K). The 
association between HLA-DR expression and cancer 
metastasis and aggressiveness was initially debated 
but were later substantiated. Recent studies have 
indicated that high MHC-II expression is correlated 
with functional stem cell activity in haematopoietic 
stem cells, and expression levels progressively 
decrease during differentiation [60]. Moreover, 
MHC-II signalling, particularly via HLA-DR, has been 
implicated in promoting cancer cell migration and 
invasion by upregulating the expression of integrins 
and cell adhesion molecules and concurrently 
activating the JAK/STAT3 and PI3K/AKT pathways 
[61].  

The tumour microenvironment undergoes 
dynamic evolution during cancer progression, and 
transitions from an immunostimulatory state to an 
immunosuppressive state. In our analysis, MI UC 
samples exhibited an immunosuppressive landscape 
characterized by a reduction in effector T cells, 
increased CD8+ T-cell exhaustion, increased Treg 
expansion, and a greater abundance of M2-polarized 
macrophages (Figure 3D, 4D), which may contribute 
to tumour progression and immune evasion. 
Exhausted CD8+ T cells lose their cytotoxic function, 
which enables unchecked tumor proliferation. The 
overexpression of inhibitory receptors on T cells, 
along with their ligands on cancer cells, facilitates 
immune evasion [45]. Tregs suppress effector T-cell 

responses by secreting cytokines such as IL-10 and 
TGF-β and interacting by CD80/CD86 on DCs, 
thereby impairing costimulatory signalling [62]. M2 
macrophages, including well-characterized SPP1+ 
subsets, support tumor progression and metastasis 
through angiogenesis, extracellular matrix 
remodelling, and the secretion of immunosuppressive 
cytokines and chemokines [63, 64].  

This study has several limitations. First, 
although our findings were derived from multiomics 
analyses and were validated in multiple independent 
cohorts, the experimental evidence remains relatively 
limited. In particular, the functional assays were 
primarily conducted in vitro, which may not fully 
recapitulate the complexity of the in vivo tumour 
microenvironment. Second, although our results 
suggest potential communication between MHC-II⁺ 
cancer cells and immune cell populations, the 
identified cellular interactions and regulatory 
pathways lack experimental validation. Additional in 
vivo studies and mechanistic experiments, such as 
those involving coculture systems and humanized 
mouse models, are needed to confirm and extend our 
observations. 

In conclusion, our study provides a 
comprehensive single-cell analysis of UC, and reveals 
an immunosuppressive tumour microenvironment 
and a subset of cancer cells with MHC-II expression in 
MI tumours. The intricate cellular crosstalk between 
MHC-II⁺ cancer cells and immune cells facilitates 
immune evasion and tumour progression. However, 
further studies are needed to validate these findings 
and to elucidate their therapeutic implications. 
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