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Abstract 

This review underscores the dynamic role of the extracellular matrix (ECM) in regulating cellular behavior and 
maintaining tissue homeostasis, highlighting its pivotal involvement in aging, calcification, and cancer diseases. In 
healthy tissues, controlled ECM remodeling provides essential biochemical and mechanical cues, but 
dysregulation (driven by chronic inflammation, cellular senescence, and altered intercellular communication) 
leads to fibrosis, calcification, and the creation of a pro-tumorigenic microenvironment. Senescent cells 
contribute to these changes through senescence-associated secretory phenotype (SASP), which reinforces 
inflammation and matrix degradation, while extracellular vesicles (EVs) mediate intercellular signaling and 
further modulate ECM structure and function. In cancer, ECM remodeling not only facilitates tumor 
progression and metastasis by forming physical and biochemical barriers but also hinders the efficacy of 
conventional and immunotherapeutic interventions. Similarly, in cardiovascular diseases, aberrant ECM 
remodeling exacerbates tissue damage and impairs regenerative processes. Emerging therapeutic strategies aim 
to restore ECM homeostasis through targeted interventions, including ECM-normalizing agents, EV-based 
therapies, and stem cell approaches that modulate matrix composition to improve tissue repair. By elucidating 
the complex interplay between ECM dysfunction, cellular senescence, and chronic inflammation, this review 
highlights promising avenues for developing personalized treatments that address the underlying causes of 
age-related and tumorigenic pathologies, ultimately, the way to improved clinical outcomes. 

Keywords: extracellular matrix, aging, calcification, cancer, cellular senescence, chronic inflammation, extracellular vesicles, 
tumor microenvironment, collagen, and metalloproteases 

Introduction 
The extracellular matrix (ECM) is a highly 

dynamic and complex network of proteins and other 
biomolecules that provides structural and 

biochemical support to cells and tissues. Beyond its 
fundamental role as a scaffold, the ECM actively 
regulates key cellular processes such as adhesion, 
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migration, proliferation, differentiation, and 
apoptosis. It serves as a reservoir for growth factors 
and cytokines, mediates signal transduction through 
interactions with cell surface receptors (e.g., 
integrins), and contributes to tissue homeostasis, 
repair, and regeneration. 

The mechanisms governing ECM secretion and 
assembly are highly conserved among eukaryotes, 
indicating their evolutionary origins long before the 
emergence of multicellular animals [1,2]. Many ECM 
proteins exhibit oligomeric structures, with the most 
common motifs being the GXY repeats in collagens, 
which facilitate the formation of a stable triple helix, 
and the α-helical heptad repeats, which promote 
oligomerization into trimers, tetramers, or pentamers 
[2]. These structural features are widely distributed 
across different biological domains, including viruses, 
suggesting an ancient and fundamental role for ECM 
components in cellular organization. Additionally, 
ECM proteins are characterized by the presence of 
repeated domains, such as the von Willebrand factor 
A (vWF-A) domain, the thrombospondin type 1 
domain, and the epidermal growth factor (EGF) 
domain—all of which originated in early eukaryotic 
lineages and remain essential for ECM functionality 
[3,4]. The evolutionary conservation of these domains 
underscores the critical role of the ECM in the 
development and maintenance of complex 
multicellular life. 

The ECM is essential for maintaining tissue 
integrity and function across various physiological 
contexts. In development, ECM components guide 
cellular differentiation and organogenesis, while in 
wound healing, they coordinate tissue repair through 
tightly regulated deposition and remodeling [5–7]. 
However, the dysregulation of ECM homeostasis 
contributes to a wide range of pathological conditions, 
particularly those associated with aging-related 
diseases, such as cancer, vascular calcification, 
fibrosis, and osteoarthritis [8–11].  

As aging progresses, ECM components undergo 
biochemical and mechanical alterations, including 
increased collagen cross-linking, elastin degradation, 
and matrix stiffening [12]. These changes compromise 
tissue elasticity and impair cellular function, 
ultimately contributing to conditions such as fibrosis, 
osteoarthritis, and vascular diseases [13]. One 
prominent consequence of ECM dysfunction in aging 
is pathological calcification, characterized by the 
deposition of calcium phosphate crystals within the 
ECM [14]. This process disrupts tissue architecture 
and promotes dysfunction, playing a central role in 
disorders such as vascular calcification, valvular heart 
disease, and skeletal pathologies. Inflammatory and 
metabolic factors further influence ECM calcification, 

exacerbating disease progression. Within 
aging-related conditions, ECM remodeling is a key 
driver of tumor progression [15]. Aberrant ECM 
dynamics create a microenvironment that fosters 
cancer cell invasion, metastasis, and resistance to 
therapy. Increased ECM stiffness, excessive collagen 
deposition, and proteolytic ECM degradation 
facilitate epithelial-to-mesenchymal transition (EMT) 
and immune evasion, enabling malignant 
transformation and tumor expansion. 

Given the critical role of ECM dysfunction in 
various diseases, extracellular vesicles (EVs) have 
emerged as promising therapeutic tools in 
regenerative medicine [16]. EVs—including exosomes 
and microvesicles—act as natural carriers of bioactive 
molecules such as proteins, nucleic acids, and lipids, 
enabling the modulation of ECM composition and 
function [17]. In degenerative diseases, EVs derived 
from mesenchymal stem cells (MSCs) have 
demonstrated the ability to restore ECM integrity by 
delivering reparative factors that stimulate 
fibroblasts, suppress inflammation, and enhance 
collagen synthesis [18]. Furthermore, in fibrosis and 
cancer, engineered EVs can transport anti-fibrotic 
agents, matrix metalloproteinases (MMPs) inhibitors, 
or RNA-based therapies to regulate ECM remodeling 
and prevent disease progression. 

A particularly promising application of EVs lies 
in targeted drug delivery [19]. Functionalized EVs, 
designed with ECM-binding motifs, enable precise 
localization of therapeutic agents to affect tissues, 
thereby enhancing treatment efficacy while 
minimizing systemic toxicity. The emergence of 
EV-based therapies represents a paradigm shift in the 
management of ECM-related disorders, offering 
innovative strategies to restore tissue function and 
combat degenerative diseases [20].  

This review provides a comprehensive analysis 
of the extracellular matrix (ECM), covering its 
biochemical composition, structural organization, and 
dynamic remodeling through synthesis, biogenesis, 
and enzymatic turnover. We explore its biological 
functions, including cell support, growth regulation, 
and its role as a signaling reservoir, as well as its 
involvement in Anoikis. In addition, we examine 
ECM interactions in pathological contexts such as 
cancer and aging, highlighting the role of extracellular 
vesicles (exosomes) in ECM modulation. We also 
review ongoing clinical trials and emerging 
ECM-targeted therapies, with a focus on regenerative 
medicine, oncology, and nanotechnology-based 
approaches to drug delivery and tissue engineering. 
This synthesis highlights the importance of ECM in 
health and disease and offers insights into its potential 
for therapeutic innovation. 
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Components and structure of ECM 
Structure 

As it is described above, ECM is important in 
regulating different cellular processes, such as 
adhesion, differentiation, proliferation, migration, 
and apoptosis [20]. This regulation is facilitated by the 
intricate network of matrix components and their 
interactions with each other, signaling factors, and 
membrane receptors [21]. ECM is an essential 
component of connective tissue, along with epithelial, 
muscle, and nerve tissue (the main tissue types in the 
human body) [22]. The ECM is a complex mixture of 
water, proteins, and polysaccharides, and the balance 
of these components varies depending on the tissue 
type, such as cartilage, bone, fat, or tendon [23,24]. As 
well as the tissue´s developmental stage and 
pathophysiological state. ECM components are 
synthesized and secreted locally by cells, primarily 
fibroblasts, which are the most numerous yet least 
specialized connective tissue cells [25]. The 
organization of the ECM structure is influenced by the 
arrangement and orientation of the intracellular 
cytoskeleton [26].  

Although the basic organization of the ECM is 
consistent, there are two primary types distinguished 
by their location and composition: the interstitial 
matrix and the pericellular matrix. The interstitial 
matrix forms a three-dimensional porous network 
that surrounds cells, particularly in connective tissue. 
In contrast, the pericellular matrix is more compact 
and forms a layer adjacent to the cells [27].  

The interstitial matrix, often referred to as the 
proper matrix, forms the structural scaffolding for 
cells. Its basic components are heterotypic fibrils 
primarily composed of type I collagen, with smaller 
amounts of type III and V collagens in varying 
proportions, all of which play an essential role in 
fibrillogenesis in cells [28]. These collagens are mostly 
secreted by fibroblasts. Additionally, important 
components of this amorphous three-dimensional gel 
include fibronectin and elastin, which are involved in 
the organization of the matrix structure [29].  

A typical example of the pericellular matrix is 
the basement membrane, which is located at the 
interface between parenchyma and connective tissue. 
It provides a sheet-like anchoring layer that supports 
and stabilizes parenchymal cells, preventing them 
from tearing apart. Basement membranes are 
composed of collagen type IV, laminins, nidogens 1 
and 2, and heparan sulfate proteoglycans (HSPGs) 
such as perlecan, agrin, collagen type XV, and 
collagen type XVIII [30–32]. Also, it contains 
matricellular proteins that do not contribute to its 
physical stability or structural integrity but have 

regulatory roles. These proteins interact with surface 
receptors, proteases, hormones, and other biologically 
active molecules and may be specific to certain tissues 
in terms of function and structure. Examples of these 
proteins include SPARC (secreted protein acidic and 
rich in cysteine, also known as osteonectin, primarily 
associated with mineralizing tissues like bone), 
thrombospondin-1 (which is abundant in platelet 
α-granules and, when secreted, activates TGF-β1, or 
transforming growth factor-beta 1), and tenascin-C 
(which is expressed during embryonic development 
but is minimally detectable in adult tissues, becoming 
more apparent during pathological processes) [33–38]. 
The basement membrane regulates tissue 
development, function, and regeneration by 
controlling cellular responses; it acts as a reservoir of 
growth factors, modulating their activity and 
concentration, and helps maintain the phenotype of 
surrounding cells  [39]. The interstitial matrix and 
basement membrane are closely interconnected, 
working together to ensure tissue integrity [40].            

On the other hand, the cells embedded within 
the ECM interact with this macromolecular network 
through surface receptors, including integrins, 
discoidin domain receptors (DDRs), cell surface 
proteoglycans (PGs), and the hyaluronan (HA) 
receptor CD44 [41]. These interactions allow cells to 
integrate signals from the ECM that influence their 
functions and behavior. All cell types synthesize and 
secrete ECM macromolecules in response to multiple 
signals, contributing to ECM formation [42]. 
Variations in ECM composition and structure affect 
both the architecture and biomechanical properties of 
the matrix, together with the signals transmitted to 
cells, thereby modulating their responses [43]. Growth 
factors, cytokines, and chemokines are deposited with 
the ECM through binding to specific ECM molecules. 
These factors can be released in a controlled manner, 
influencing development and physiological processes 
at appropriate times [44]. They are also actively 
involved in the reorganization of ECM. Besides 
synthesizing and secreting structural components, 
they also produce enzymes that degrade them. 
Remodeling processes are complex and must be 
tightly regulated to maintain environmental 
homeostasis [45].    

Furthermore, ECM remodeling occurs under 
both physiological conditions and disease processes, 
influencing the structure and properties of ECMs in 
different ways [46]. For instance, proteolytic 
degradation mediated by enzymes such as matrix 
metalloproteinases (MMPs), disintegrin and 
metalloproteinases (ADAMTS), plasminogen 
activators, and the degradation of HSPGs chains by 
heparinase, releases heparin-binding growth factors 
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that activate angiogenesis and cell growth, 
particularly during tumorigenesis [47]. During 
tumorigenesis, significant alterations in the ECM lead 
to the formation of fibrotic stroma characterized by 
increased stiffness, excessive deposition of ECM 
components, and the release of proteolytic enzymes 
that contribute to abnormal ECM remodeling [48]. 
Enhanced lysyl oxidase (LOX) activity promotes the 
cross-linking of collagen fibers with other ECM 
components, further increasing matrix stiffness. 
Various cell types within the tumor stroma, such as 
cancer-associated fibroblasts (CAFs), endothelial cells, 
immune cells, pericytes, and even the tumor cells 
themselves, contribute to the development of 
deregulated and disorganized ECMs that support and 
promote tumorigenesis [49].    

ECM cycle 

Extracellular matrix biogenesis: secretion and 
assembly  

The biogenesis of the ECM is a fundamental, 
multi-step process essential for tissue development, 
maintenance, and repair. This process involves 
coordinated synthesis, secretion, and extracellular 
assembly and remodeling of a diverse set of 
macromolecules. Key structural ECM components 
include fibrous proteins such as collagens and 
elastins, proteoglycans, and adhesive glycoproteins 
like fibronectin and laminin [50]. Their precursors are 
synthesized primarily by fibroblasts, chondrocytes, 
and osteoblasts, although epithelial and other 
mesenchymal cells may contribute to tissue-specific 
contexts [51]. 

Intracellular synthesis of collagen begins in the 
rough endoplasmic reticulum (RER), where the initial 
translation product, known as preprocollagen, 
contains signal peptides and globular domains at the 
N- and C-termini. Although Porter et al initially 
proposed a model of direct cytoplasmic extrusion of 
collagen fibrils at the cell surface, later 
autoradiographic and immunohistochemical studies, 
notably those by Revel and Hay, demonstrated that 
collagen follows the canonical secretory pathway via 
the RER and Golgi apparatus [52]. These studies also 
revealed that newly synthesized collagen is typically 
deposited at some distance from the cell surface, 
suggesting that polymerization occurs extracellularly 
rather than directly on the plasmalemma [53]. Within 
the cisternae of the RER, a series of PTMs is initiated 
to transform preprocollagen into a functional 
precursor suitable for further processing and 
secretion: 

1. Cleavage of the signal peptide: The N-terminal 
signal peptide of the preprocollagen is cleaved upon 

entry into the lumen of the RER, generating 
procollagen. 

2. Hydroxylation of proline and lysine residues: 
Specific proline and lysine residues in procollagen 
chains undergo post-translational hydroxylation 
catalyzed by prolyl hydroxylases and lysyl 
hydroxylases, respectively. These enzymes require 
ascorbic acid (vitamin C) as an essential cofactor. 
Hydroxylation is critical for the formation of 
intramolecular hydrogen bonds that stabilize the 
collagen triple helix. Deficiencies in this modification, 
as observed in scurvy, compromise collagen stability, 
leading to impaired wound healing, defective bone 
formation, and increased tissue fragility. In addition 
to its structural role, hydroxylation of lysine 
residues—particularly in type IV and VI collagens—is 
followed by glycosylation, a modification essential for 
the proper secretion, assembly, and spatial 
distribution of these collagen types. These functions 
are especially relevant in basement membranes and 
muscle tissues, where these collagen isoforms are 
most abundant [54]. 

3. Glycosylation of hydroxylysine residues: 
Some hydroxylysine residues are glycosylated by the 
addition of galactose or glucosyl-galactose moieties. 
Additionally, N-linked oligosaccharides are added to 
the terminal regions. This glycosylation modulates 
collagen secretion, assembly, and interactions. 

4. Formation of the C-terminal globular domain: 
The carboxy-terminal propeptide region of each 
α-chain folds into a globular domain stabilized by 
disulfide bonds. This domain serves as a nucleation 
site for the proper alignment and registration of the 
three α-chains. 

5. Assembly of the triple helix: Starting from the 
C-terminal end, three α-chains associate and fold into 
a right-handed triple helix. The N- and C-terminal 
propeptides remain non-helical. 

6. Formation of specific inter- and intrachain 
hydrogen bonds and disulfide bonds that contribute 
to structural stability. 

7. Association with molecular chaperones: The 
triple-helical procollagen interacts with molecular 
chaperones such as HSP47, which prevent premature 
aggregation and ensure proper folding and 
stabilization of the collagen trimer within the RER. 

8. Lateral association and transport to the Golgi: 
Next, properly folded procollagen molecules begin to 
associate laterally via interactions at their non-helical 
terminal regions. These assembled precursors are 
packaged into secretory vesicles for transport to the 
Golgi apparatus, which delivers ECM components to 
the plasma membrane for extracellular release. 

The formation of mature collagen fibrils, or 
fibrillogenesis, is a highly orchestrated extracellular 
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process critical for the structural integrity of 
connective tissues. Following secretion, ECM 
components self-assemble into supramolecular 
structures, often initiated by fibronectin, which 
nucleates collagen fibrillogenesis and guides the 
organization of matrix architecture [55]. The close 
association between the actin cytoskeleton and 
extracellular fibrils, observed in early electron 
microscopy (EM) studies and later confirmed by 
immunohistochemistry, highlights the dynamic 
interplay between cells and their surrounding matrix 
[56]. This interface is mediated by 
integrins—transmembrane receptors that couple the 
ECM to the cytoskeleton and transduce biochemical 
signals via focal adhesion complexes and intracellular 
kinase cascades. 

Following their secretion from the cell, 
procollagen molecules undergo enzymatic processing 
by membrane-associated procollagen N- and 
C-proteinases, which cleave non-helical propeptides 
at both ends [57,58]. This proteolytic activation 
produces mature collagen monomers capable of 
assembling into higher-order structures. In particular, 
the serum concentration of the N-terminal propeptide 
of type I procollagen (PINP) serves as a clinically 
relevant biomarker for type I collagen synthesis and is 
often elevated in pathological states involving 
dysregulated extracellular matrix remodeling, such as 
bone metastasis in breast and prostate cancers [59]. 

Once activated, collagen molecules align in a 
row in the extracellular space and self-assemble in a 
longitudinal head-to-tail fashion [60]. This precise 
alignment is facilitated by specialized invaginations of 
the plasma membrane called “fibrillogenesis bays,” 
which serve as nucleation sites for collagen assembly 
[61]. These localized surface domains allow the 
accumulation and spatial coordination of secreted 
collagen molecules, promoting the formation of 
nascent fibrils with a defined orientation and 
periodicity. 

The stability and mechanical properties of 
collagen fibrils are further enhanced by the enzymatic 
formation of covalent cross-links. These cross-links, 
mediated by lysyl oxidase, involve aldehyde groups 
generated from lysine and hydroxylysine residues 
and are essential for fibril maturation and resistance 
to tensile forces [62]. The assembled fibrils aggregate 
laterally to form larger collagen fibers. These 
supramolecular structures confer remarkable tensile 
strength to tissues, with a strength-to-weight ratio 
comparable to that of steel, underscoring the 
indispensable role of collagen in maintaining the 
architecture and function of the extracellular matrix. 
In addition to enzymatic cross-linking, proper 
collagen assembly and function depend on 

post-translational modifications, including 
glycosylation of hydroxylysine residues catalyzed by 
lysyl hydroxylase 3 (LH3). Recent findings 
demonstrate that LH3 requires intracellular 
trafficking via interaction with VIPAR and VPS33B 
proteins, with the assistance of RAB10 and RAB25, for 
delivery to specialized collagen IV carriers in 
epithelial cells [63].    

Recent evidence suggests that the assembly of 
type I collagen fibrils is initiated by a fibrillar 
nucleation complex enriched in type V and XI 
collagens [64]. These molecules act as regulatory 
scaffolds that establish the initial fibril core, on which 
type I collagen molecules are subsequently deposited 
and polymerized. Type V and XI collagens play a 
critical role in controlling fibril diameter by limiting 
lateral growth once the desired thickness is reached. 

In addition, mature collagen fibrils are often 
associated with the fibril-associated collagens with 
interrupted triple helices (FACIT) family, which 
includes collagens such as types IX and XII [65]. These 
molecules are located on the surface of fibrils and 
mediate interactions with other components of the 
ECM, thus contributing to matrix organization and 
tissue-specific architecture. In cartilage, for example, 
type IX collagen is found on the surface of type II 
fibrils, anchoring them to proteoglycans and other 
ECM components and reinforcing the mechanical 
integrity of the tissue [66]. 

Collagen molecules are synthesized by various 
cell types in both connective and epithelial tissue. In 
connective tissue, collagen production is mainly 
carried out by fibroblast-like cells, including 
tissue-specific analogues such as chondrocytes in 
cartilage, osteoblasts in bone and pericytes in blood 
vessel walls [67–69]. In addition, epithelial cells 
contribute to the synthesis of collagen components of 
basement membranes, underscoring the broad 
involvement of diverse cell types in collagen 
biogenesis [70]. 

The regulation of collagen synthesis is mediated 
by a complex network of signaling pathways 
involving growth factors, hormones and cytokines. 
For example, transforming growth factor beta (TGF-β) 
and platelet-derived growth factor (PDGF) are potent 
stimulators of collagen production by fibroblasts 
[70,71]. In contrast, glucocorticoid hormones exert an 
inhibitory effect, down-regulating collagen gene 
expression and synthesis [72]. These regulatory 
mechanisms are critical for maintaining tissue 
homeostasis and modulating extracellular matrix 
remodeling during development, repair, and disease. 

In epithelial tissues, collagen fibrils are often 
arranged in highly ordered orthogonal lattices, such 
as those found in the dermis of aquatic vertebrates 
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and in the corneal stroma of birds [73]. To explain the 
development of these specialized architectures, Porter 
and colleagues proposed the “shingle” or scindulene 
hypothesis, according to which narrow layers of 
collagen are inserted obliquely into the basal lamina 
and are sequentially displaced by newly synthesized 
layers [74]. This layered, anisotropic arrangement is 
thought to arise from tightly regulated interactions 
between secretory epithelial cells, the basal lamina, 
and the underlying ECM. 

In connective tissues, the organization of 
collagen fibrils is tailored to the mechanical and 
functional demands of the tissue. In cartilage, type II 
collagen forms a dense three-dimensional network 
embedded in a hydrated matrix rich in proteoglycans, 
which confers tensile and compressive strength [75]. 
Minor fibrillar collagens, such as types IX and XI, 
copolymerize with type II and modulate fibril 
diameter, interfibrillar spacing and cross-linking, thus 
contributing to the biomechanical integrity of the 
tissue. 

In bone, type I collagen fibrils constitute the 
primary organic scaffold for mineral deposition [76]. 
These fibrils exhibit a characteristic D-periodic 
banding pattern, reflecting the precise, staggered 
quarter alignment of tropocollagen molecules. This 
molecular organization is essential for the nucleation 
and orderly deposition of hydroxyapatite crystals, 
which endow the tissue with compressive strength. 
The hierarchical assembly of collagen in bone is 
orchestrated by osteoblasts and tightly regulated by 
local and systemic factors, such as mechanical stimuli, 
growth factors such as TGF-β and bone 
morphogenetic proteins (BMPs) [77]. Taken together, 
these examples underscore the structural versatility of 
collagen fibrils, whose tissue-specific arrangement is 
governed by both intrinsic molecular properties and 
extrinsic cellular and biomechanical factors. 

Extracellular remodeling  

The ECM is continuously remodeled through a 
dynamic balance between synthesis and degradation, 
essential for tissue homeostasis, development, repair, 
and adaptation to mechanical and biochemical 
stimuli. Collagen fibrils, despite their structural 
stability, are not static entities; they are subject to slow 
but continuous turnover, with half-lives ranging from 
a few days to several years depending on tissue type, 
e.g., skin vs. cartilage [78]. Degradation is initiated 
through mechanical stress, oxidative damage, or 
enzymatic cleavage and continues via proteolytic or 
phagocytic pathways [79,80]. 

Proteolytic degradation pathways 

Proteolytic degradation occurs extracellularly, 

and the ECM can be cleaved by different families of 
proteases with overlapping substrate specificities 
(Table 1). 

 

Table 1. Enzymes involved in ECM proteolytic degradation 
pathways 

Enzyme 
family 

Representative 
members 

Substrates Source cells Mode of action 

MMPs MMP-1, 
MMP-2, MMP-9 

Collagens 
I-IV, elastin. 
Fibronectin 

Fibroblasts, 
neutrophils 

Extracellular 
cleavage 

ADAMTS ADAMTS2, 
ADAMTS4 

Procollagen, 
aggrecan 

Chondrocytes 
fibroblasts 

Secreted proteases 

Meprins Meprin-α, 
Meprin-β 

Collagen IV, 
fibronectin 

Kidney, 
intestine 

Secreted/ 
membrane-bound 

Cathepsins Cathepsin K, L Collagens, 
laminins 

Macrophages, 
osteoclasts 

Extracellular or 
lysosomal  

Serine 
proteases 

Plasmin, 
neutrophil 
elastase 

Fibrin, 
fibronectin 

Neutrophils 
epithelial cells 

Pericellular/ 
solubleº 

Heparanase - HSPGs Endothelial 
cells, tumors 

ECM-bound 

 
 
Matrix metalloproteinases. Matrix metalloprotein-

ases (MMPs), a family of zinc-dependent 
endopeptidases secreted by fibroblasts, chondrocytes, 
macrophages, neutrophils, epithelial cells (e.g., 
keratinocytes), and cancer cells [81]. MMPs act on 
various components of the ECM: collagenases (e.g. 
MMP-1) degrade native fibrillar collagens (types I, II, 
III and X), gelatinases (MMP-2 and MMP-9) cleave 
denatured collagens (gelatins), laminin, fibronectin 
and elastin, stromelysins (e.g. MMP-3) degrade 
proteoglycans, fibronectin and non-helical collagens, 
matrilysins target basement membrane components 
such as type IV collagen and proteoglycans, 
membrane-type MMPs (MT-MMPs), produced 
mainly by tumor cells, exhibit potent pericellular 
proteolytic activity and macrophage metalloelastases 
(e.g. MMP-12) degrade elastin, type IV collagen and 
laminin [82–86]. Their expression and activity are 
typically low under physiological conditions but are 
markedly upregulated during tissue remodeling, 
inflammation, and pathological states such as cancer 
and fibrosis. MMPs are synthesized as inactive 
zymogens and are subsequently activated 
extracellularly through proteolytic cleavage by serine 
proteases or other MMPs, or via oxidative 
modification of a regulatory cysteine residue [87,88]. 

Adamalysins. This family includes disintegrinases 
and metalloproteinases (ADAMs) and ADAMs with 
thrombospondin motifs (ADAMTS). Of the 22 human 
ADAMs, 12 are catalytically active. ADAMs, often 
membrane-anchored, function as sheddases, cleaving 
ectodomains of membrane-bound proteins such as 
cytokines, growth factors, and receptors. Some 
ADAMs (e.g., ADAM10, ADAM12, ADAM15) can 
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also degrade ECM proteins [89]. ADAMTS enzymes 
are secreted proteinases characterized by type I 
thrombospondin motifs. Several members of the 
ADAMTS family (e.g., ADAMTS4 and ADAMTS5) 
are aggrecanases, involved in proteoglycan 
degradation. Others (ADAMTS2, -3, -14) function as 
procollagen N-propeptidases, essential for the 
maturation and deposition of collagen fibrils [90]. 
ADAMTS13 cleaves von Willebrand factor and is 
essential for hemostasis [91]. 

Meprins. Meprins are zinc-dependent 
metalloproteinases belonging to the astacin family 
[92]. They are composed of α and β subunits that form 
homo- or hetero-oligomeric complexes. Meprin-α is 
secreted, whereas meprin-β is membrane-bound but 
can be shed via ADAM10 [93]. Meprins cleave several 
ECM components, including collagen IV, nidogen, 
and fibronectin. They also contribute to the processing 
of procollagen I and can regulate other 
metalloproteinases, such as promoting MMP-9 
activation via MMP-3 [94].  

Other enzymes are involved in ECM remodeling. On 
the one hand, serine proteases such as plasmin 
(activated by urokinase and tissue plasminogen 
activators) degrade fibrin, fibronectin, and laminin 
[95]. Neutrophil-derived elastase targets elastin and 
fibronectin, while matriptase, a serine protease bound 
to the epithelial membrane, maintains the integrity of 
the epithelial barrier [96,97].  On the other hand, 
cathepsins are lysosomal proteases with serine 
(cathepsins A and G), aspartic (cathepsins D and E), 
and cysteine (e.g., cathepsins B, K, L) variants [98,99]. 
They can function extracellularly or degrade ECM 
components after endocytic uptake and lysosomal 
processing. Finally, heparanase cleaves heparan 
sulfate proteoglycans (HSPG), altering ECM structure 
and releasing bound growth factors and cytokines 
[100]. Sulfatases 1 and 2 remove 6-O-sulfate groups 
from HSPGs, modulating the binding and signaling of 
factors such as FGF1 and VEGF [101]. 

Regulation of the proteolytic pathway 

Endogenous inhibitors are essential for 
maintaining the integrity of the extracellular matrix 
(ECM) by tightly controlling proteolytic activity 
(Table 2). Tissue inhibitors of metalloproteinases 
(TIMPs)-TIMP1 to TIMP4- regulate the function of 
matrix metalloproteinases (MMPs), as well as 
members of the ADAM and ADAMTS families, with 
distinct binding specificities [102]. Among them, 
TIMP3 is sequestered in the ECM, whereas the others 
exist predominantly in soluble form. TIMP3 is also the 
main inhibitor of ADAM and ADAMTS [103]. Other 
regulatory molecules include RECK 
(reversion-inducing cysteine-rich protein with Kazal 

motifs), which modulates both MMP and ADAM 
activity, and other endogenous inhibitors such as 
cystatin C, elafin, and fetuin A, which have been 
shown to suppress meprin activity [104]. ECM 
turnover is governed by complex regulatory networks 
involving genetic, biochemical, and mechanistic 
signals. The balance between proteolytic enzymes and 
their inhibitors, exemplified by the MMP/TIMP ratio, 
determines the net proteolytic capacity within a given 
tissue and is finely tuned by transcriptional control, 
zymogen activation, and inhibitor availability [105]. 
Intact triple helix collagens are relatively resistant to 
proteolysis; however, once structurally compromised 
by mechanical stress or oxidative injury, they become 
more vulnerable, especially to gelatinases such as 
MMP2 and MMP9 [106]. Disruption of the delicate 
balance between MMPs and their inhibitors 
contributes to pathological degradation of the ECM, 
as seen in chronic inflammatory conditions, tumor 
invasion, and degenerative diseases such as 
rheumatoid arthritis and osteoporosis.  

 

Table 2. Endogenous inhibitors of ECM proteases 

Inhibitor  Target protease Localization Functional notes 
TIMP-1 MMPs (broad 

spectrum) 
Soluble Inhibits active MMPs 

TIMP-3 MMPs, ADAMs, 
ADAMTS 

ECM-bound Inhibits sheddases and 
aggrecanases 

Serpins Serine proteases (e.g., 
plasmin) 

Plasma/ interstitial Regulate coagulation and 
fibrinolysis 

Cystatins Cysteine cathepsins Cytosol/ 
extracellular 

Inhibit lysosomal enzymes 

Sulfatases Modulate HSPG 
sulfatation 

ECM-associated Influence FGF/VEGF 
signaling 

 
 

Phagocytic degradation pathway 

Phagocytic degradation constitutes a crucial 
intracellular mechanism for the turnover of ECM 
components, particularly fibrillar collagens. In this 
pathway, relatively intact collagen fibers are 
recognized and internalized by fibroblasts or 
macrophages via receptor-mediated endocytosis, 
often facilitated by β1-integrins (e.g., α1β1, α10β1, 
α11β1) that bind to noncollagenous components such 
as fibronectin or proteoglycans decorating the 
collagen surface [107]. The formation of actin-rich 
pseudopodia allows engulfment of collagen segments 
in phagocytic vesicles [108]. Membrane matrix 
metalloproteinase type 1 (MT1-MMP), located on the 
cell surface, initiates partial cleavage of collagen prior 
to internalization [109]. Once inside the cell, the 
phagocytosed collagen is transported to the 
lysosomes, where it is degraded by lysosomal cysteine 
proteases, such as cathepsins. This pathway 
complements extracellular degradation by allowing 
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the removal of ECM debris and promotes tissue 
remodeling under physiological conditions. In 
contrast to the rapid extracellular cleavage that 
predominates in pathological contexts, phagocytic 
degradation proceeds at a slower rate and is 
particularly important for the homeostatic 
maintenance of ECM integrity and the resolution of 
matrix turnover during tissue repair [110]. 

To summarize this explanation of the ECM cycle, 
a schematic graphic is provided to emphasize its key 
stages (Figure 1). 

Components  

Collagen and elastic fibers  

Collagen terms refer to a family of glycoproteins 
distinguished by three key features. The first is the 
repeating amino acid sequence [Gly-X-Y] n, which can 
include interruptions. The second feature is the 

common presence of proline and its hydroxylated 
form, hydroxyproline, in the X and Y positions, 
respectively. The third defining characteristic is the 
unique quaternary structure: a right-handed triple 
helix formed from three left-handed polyproline 
α-chains of identical length [111], which adopts a 
polyproline type II-type helical conformation and 
coils around each other. Interchain hydrogen bonds 
hold the α-chains together. The small hydrogen atom 
side chain of glycine in every third residue within the 
α-chains allows them to pack tightly together in a 
triple helix, with this residue in the interior of the 
helix and the rings of proline and 4-hydroxyproline 
pointing outward [112]. Collagens also have 
non-collagenous (NC) non-triple helical domains at 
both C- and N-termini, which are numbered from the 
C-terminus (NC1, NC2, NC3, etc.) [113].      

 

 
Figure 1. A schematic graphic of the development of the ECM cycle is presented to illustrate the dynamic processes involved in extracellular matrix remodelling and to provide 
a clear visual overview of its key stage and interactions.  
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It makes up to 30% of the total protein in 
humans. It is synthesized and secreted into ECMs 
primarily by fibroblasts. It is the most abundant 
fibrous protein within the interstitial ECMs of all 
animals and is also found in pericellular matrices such 
as the basement membrane [114]. The discovery of 
transmembrane collagens on the surface of various 
cell types containing bioactive peptides liberated 
upon degradation has amplified interest in collagen 
biology. By exerting tension on the matrix, fibroblasts 
organize collagen fibrils into sheets and cables, 
significantly influencing the alignment of collagen 
fibers [115].    

It forms part of a superfamily of twenty-eight 
types, each formed by at least forty-six unique 
polypeptide chains (α chains) in vertebrates. Collagen 
type I, the most prevalent collagen, is widely 
expressed across various tissues. It forms ideal 
heterotrimeric triple helices that naturally assemble 
into fibrils and are a key structural component in 
tissues such as skin, bone, and tendons [116]. Collagen 
types vary significantly in their structure and 
functions. Some have breaks in their triple helices and 
do not self-assemble, while others, like 
transmembrane collagens, exhibit long interruptions 
and are crucial for cell signaling and adhesion [117].  

Numerous mutations have been identified in 
collagen genes that can affect trimerization, collagen 
network formation, and propeptide cleavage. These 
mutations are associated with various clinical 
pathologies, such as Ehlers-Danlos syndrome 
(collagen types I, III, V) [118], osteogenesis imperfecta 
and osteoporosis (collagen type I) [119], osteoarthrosis 
(collagen type II, IX, X, XI) [120], chondrodysplasias 
(collagen types II, IX, X, XI) [121,122], arterial 
aneurysms (collagen type III) [123],  Bethlem 
myopathy and Ullrich muscular dystrophy (collagen 
type VI) [124], epidermolysis bullosa acquisita 
(collagen type VII) [125], generalized atrophic 
epidermolysis bullosa (collagen type XII) [126], Fuchs 
endothelial corneal dystrophy (collagen type VIII) 
[127], Knobloch syndrome (collagen type XVIII) [128], 
Alport syndrome (collagen type IV) [129], and Schmid 
metaphyseal chondrodysplasia (collagen type X) 
[130].  

Collagens are categorized into seven groups 
based on their domain homology and functions. 
These categories include:  
• Fibrillar collagens: Including types I, II, III, V, XI, 

XXIV, and XXVII, are important for providing 
tensile strength to tissues. These collagens form 
67-nm periodic fibrils through a regular 
staggered arrangement of triple helical 
molecules, with fibril diameters ranging from 12 
nm to over 500nm, depending on development 

[131]. Their formation is influenced by other 
matrix macromolecules such as decorin and 
biglycan. Fibrillar collagens feature a long, 
uninterrupted Gly-X-Y domain and are flanked 
by N- and C-terminal propeptides. The α chains 
form homo- and heterotrimeric helices, with 
NC1 domains ensuring correct alignment for 
triple helix nucleation [132]. Post-translational 
modifications in the endoplasmic reticulum 
include hydroxylation, glycosylation, and 
disulfide bridge formation. Procollagen triple 
helices are cleaved by specific proteinases from 
tropocollagen, which then assemble into 
collagen microfibrils. LOX facilitates the 
formation of cross-links, stabilizing fibrils and 
contributing to their mechanical properties [133]. 
However, collagen types XXIV and XXVII 
exhibit imperfections in their Gly-X-Y sequences, 
indicating very short interruptions in their triple 
helical structure. Collagen fibrils found in the 
dermis, tendons, and other tissues are often 
composites of various collagen types, typically 
types I, III, and V [134]. These composite fibers 
are known as heterotypic fibrils, in contrast to 
homotypic fibrils, which consist of a single 
collagen type, such as collagen VII found in 
fibrils are the dermo-epidermal junction [134].  
While collagen type I often predominated in a 
tissue, various types, and matrix 
macromolecules interact to impart specific 
structural and functional characteristics. Beyond 
their mechanical support role, collagen scaffolds 
also influence cell migration, adhesion, 
angiogenesis, tissue development, and repair 
[135].  

• Network-forming collagens: Include types IV, 
VIII, and X, each playing distinct roles in various 
tissues. Collagen type IV, a key component of 
basement membranes, is essential for molecular 
filtration [136]. Collagen type VII is found in 
Descemet´s membrane and vascular 
sub-endothelial matrices [137], while collagen 
type X is present in the hypertrophic zone of 
growth plate cartilage [138]. These collagens 
feature interruptions in their triple helices, 
allowing flexibility and extensive network 
formation. Collagen type IV begins folding at the 
C-terminus and progresses towards the 
N-terminus. The NC1 domain facilitates the 
tail-to-tail association of trimeric molecules, 
forming hexamers stabilized by Met-Lys 
cross-links [139].  This assembly leads to the 
creation of a two-dimensional network. Similarly, 
collagen types VIII and X form polygonal lattices, 
with the NC1 domains for their supramolecular 
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assembly. Additionally, these collagens interact 
with various ECM components to form complex 
multimolecular networks [140]. They offer 
structural support and attachment for cells and 
tissues, and function as a filtration barrier for 
macromolecules in organs like the kidneys [141].  

• FACITs: encompass collagen types IX, XII, XIV, 
XVI, XIX, XX, XXI, and XXII. These collagens are 
relatively short and feature NC domains that 
interrupt their triple helical collagenous domains, 
granting them flexibility. FACITs interact with 
fibrillar collagens on their surfaces, connecting 
collagen fibers and other ECM molecules [142]. 
For instance, collagen type IX is covalently 
bound to the surface of collagen type II fibrils, 
with collagenous domains 1 and 2 positioned 
between NC1 and NC3 domains. The NC4 
domain extends into the NC3 hinge region. 
Collagen type IX is essential for maintaining 
cartilage integrity. Collagen type XII associates 
with collagen type I and II fibrils, while collagen 
type XIV co-localizes with collagen type I 
indirectly through binding to DS chains of 
decorin, which in turn associates with collagen 
type I fibrils. In skin, collagen type XVI is 
incorporated into microfibrils, which are 
molecular composites, primarily consisting of 
collagen II and containing collagen type XI as a 
minor component [143].       

• MACITs are type II transmembrane proteins 
characterized by a long extracellular C-terminal 
domain with collagenous segments interrupted 
by NC domains and a short cytoplasmic 
N-terminal domain. This group includes 
collagen types XIII, XVII, XXIII, and XXV, which 
are produced by various cells, including 
malignant ones, and different tissues. These 
proteins function as cell surface receptors, 
influencing cell adhesion. When proteolytically 
cleaved, they release from the cell surface into 
the extracellular matrix, creating soluble 
collagens. For instance, the ectodomain of 
collagen type XVII can be cleaved by ADAMs, 
thereby modulating cell motility [144].  

• Anchoring fibrils:  Collagen type VII is the 
primary component of anchoring fibrils located 
beneath the lamina densa of the basement 
membrane, linking it to the underlying stroma. 
This collagen type is created by the 
homotrimerization of α1 (VII), featuring a central 

triple helical collagenous domain interrupted by 
a short NC domain and flanked by N- and 
C-terminal NC domains. Two collagen type VII 
molecules dimerize and subsequently assemble 
into anchoring fibrils [145].      

• Beaded-filament-forming collagens: Include 
types VI, XXVI, and XXVIII. Among these, 
collagen type VI is the most extensively studied. 
It is widely expressed in tissues, where it 
interacts with various ECM proteins, HA, PGs, 
and collagen type IV in basement membranes. 
Collagen-type VI molecules form antiparallel 
dimers through staggered alignments of 
monomers. These dimers are then associated 
laterally to create tetramers, which are stabilized 
by disulfide bonds. The tetramers connect at 
their globular ends, forming beaded filaments 
characterized by 25 nm beads spaced 100 nm 
apart [146].  

• Multiplexin: Collagen type XV and XVIII fall 
into the category of 
Multiplexins/endostatin-producing collagens. 
These types are widely expressed across all 
vascular and epithelial basement membranes in 
human tissues. Collagen type XV connects 
adjacent collagen fibrils, forming various 
oligomeric assemblies that enhance the adhesion 
of basement membranes to the underlying 
connective tissue stroma [147]. Both collagen 
types XV and XVIII feature a central triple helical 
collagenous domain interrupted by multiple NC 
domains, with collagen XV carrying CS chains 
and collagen XVIII carrying HS chains. Collagen 
XVIII is a homotrimer made up of three α1 
chains, containing ten interrupted collagenous 
domains flanked by eleven NC domains at their 
N- and C-termini [148]. It can carry three HS 
chains. Bot collagen types have a C-terminal NC 
domain that includes anti-angiogenic endostatin 
and endostatin-like modules. Cleavage of part of 
the NC1 domain releases endostatin, which 
interacts with several receptors such as integrins 
α5β1, αvβ5, and VEGFR2. These interactions 
disrupt the actin cytoskeleton, trigger a signaling 
network that downregulates the VEGF signaling 
pathway, and stimulate potent angiostatin 
components like TSPs, thereby significantly 
inhibiting angiogenesis [149].  
All these collagen groups are summarized in the 

following Table 3.  
 

 

 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

6818 

Table 3. All collagen types are divided into different groups that are classified. N.d. (Not defined). 

Collagen 
Groups Collagen 

types 
Molecular assembly Localization Function 

 
 
Fibrillar 
collagens 

I [α1(I)]2 α2(I)] 
 
[α1(I)]3 

 
Dermis, tendons, and other 
tissues 
 

Provide tensile strength to tissues; participate in cell migration, 
adhesion, angiogenesis, tissue development and repair 

II [α1(II)]3 
III [α1(III)]3 
V [α1(V)]2 α2(V) 

[α1(V) α2(V) 
α3(V)] [α1(V)]3 

XI [α1(XI) α2(XI) αα3 (XI)] 
XXIV [α1 (XXIV)]3 
XXVII [α1 (XXVII)]3 

 
 
Network-forming collagens 

IV [α1(IV)2 α2(IV)]; 
α3(IV), α4(IV), α5(IV), 
α6(IV) 

Basement membranes  
 
Formation of complex multimolecular networks from interaction 
with ECM components; structural support and attachment for cells 
and tissues; macromolecular filtration barrier 

VII [α1(VII)]3 Descemet´s membrane and 
vascular sub-endothelial 
matrices 

X [α1(X)]3 Hypertrophic zone of growth 
plate cartilage 

 
 
FACITs 

IX [α1(IX) α2(IX) αα3(IX)] Cartilage associated with type 
II collagen fibrils 

 
Connecting collagen fibers with other components of the 
extracellular matrix to maintain tissue integrity XII [α1(XII)]3 Collagen type I and II fibrils 

XIV [α1(XIV)]3 n.d. 
XVI [α1(XVI)]3 Microfibrils in skin 
XIX [α1(XIX)]3 N.d. 
XX [α1(XX)]3 N.d. 
XXI [α1(XXI)]3 N.d. 
XXII [α1(XXII)]3 N.d. 

 
MACITs 

XIII [α1(XIII)]3 Cell surface and extracellular 
matrix 

Cell surface receptors; involved in cell adhesion and motility 
XVII [α1(XVII)]3 
XXIII [α1(XXIII)]3 
XXV [α1(XXV)]3 

Anchoring fibrils VII [α1(VII)]3 Lamina densa of the basement 
membrane 

Connects the basement membrane to the underlying stroma to 
provide structural stability 

Beaded-filament-forming-collagens VI [α1(VI) α2(VI) αα3(VI)] Widely expressed in different 
tissues 

Interact with several ECM proteins, HA, PGs, in the tissues in 
which it is expressed, and type IV collagen in basement 
membranes 

XXVI [α1(XXIV)]3 N.d. N.d. 
XXVIII [α1(XXVIII)]3 N.d. N.d. 

Multiplexin XV [α1(XV)]3 Vascular and epithelial 
basement membranes in 
human tissues 

Enhances the adhesion of basement membranes to the underlying 
connective tissue stroma by connecting adjacent collagen fibrils 

XVIII [α1(XVIII)]3 Angiogenesis inhibition 

 
Elastic fibers are structural elements of the 

extracellular matrix, providing resilience to 
connective tissues. They are abundant in tissues that 
need mechanical flexibility, such as arteries, skin, 
lungs, and cartilage [150]. Elastic fibers consist of two 
primary components: elastin, a core-forming 
amorphous protein, and surrounding microfibrils 
composed of glycoproteins [151]. It is primarily 
produced from the ELN gene located on chromosome 
7. The ELN gene is active during prenatal 
development and early life; it significantly decreases 
during adulthood. Mutations in the ELN gene can 
result in improper tropoelastin production or 
assembly, leading to diseases like supravalvular aortic 
stenosis (SVAS) and Williams-Beuren syndrome 
(WBS), where elastic fiber deficiency contributes to 
arterial stenosis [152,153].    

The key precursor to elastin is tropoelastin, a 
protein with alternating hydrophobic and cross-link 
domains. Tropoelastin is secreted as a soluble 
polypeptide, with a molecular weight of around 70-72 
kDa, into the extracellular matrix, where it 
self-assembles into globular aggregates through a 
process called coacervation, driven by its 
hydrophobic regions [154]. The polymerization of 
tropoelastin begins with the oxidative deamination of 
lysine reduced, catalyzed by LOX. These cross-links 
give rise to the durable elastic fibers that provide 
issues with their resilience [155]. The process also 
involved the formation of two amino acids, 
desmosine and isodesmosine, which further stabilize 
the elastic fibers through inter- and intra-molecular 
bonds. Tropoelastin deposition on microfibrils 
comprises glycoproteins such as fibrillin-1 and 
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fibrillin-2, which are necessary to assemble mature 
fibers properly [156].  

Beyond fibrillins, MAGP-1 (microfibril- 
associated glycoprotein-1) emerges as a significant 
structural component for microfibrils. Widely 
expressed in mesenchymal and connective tissues, 
MAGP-1 is associated with nearly all microfibrils 
[157]. It binds to the amino-terminal exons of 
fibrillin-1 through its carboxyl-terminal region, which 
contains common cysteine residues. This interaction is 
key to forming stable complexes between fibrillin-1 
and other proteins, including decorin, biglycan, and 
tropoelastin, which all contribute to the structural 
assembly of elastic fibers [158].   

Microfibrils guide the spatial arrangement of 
tropoelastin and promote the orderly cross-linking 
needed for fiber maturation. The final step involves 
extensive cross-linking to form a stable, hydrophobic, 
and insoluble polymer that resists proteolysis [159].   

Elastic fibers, once formed, are stable. Elastin is 
so durable that it rarely breaks down or gets replaced 
throughout a person´s life [160]. This is one reason 
why elastin is so important for maintaining the 
structure and function of tissues, especially in organs 
that need to expand and contract, such as the lungs 
and heart [161,162]. Over time, however, changes in 
elastin, like reduced cross-linking or damage from 
environmental factors, can cause tissues to lose their 
elasticity.  

This leads to common signs of aging, such as 
sagging skin or stiffening arteries. Elastin´s 
long-lasting maturity makes it a key focus in 
understanding how tissues age and how certain 
diseases related to elastic fiber defects, such as aortic 
stenosis and skin disorders, develop [163].   

Multi-adhesive glycoproteins 

Fibronectin (FN)  

It is a glycoprotein that ranges in size from 230 to 
270 kDa and exists as a dimer, with two subunits 
covalently bonded at their C-terminal by a pair of 
disulfide bonds [164]. Each monomer comprises three 
repeating units: 12 Type I, 2 Type II, and 15-17 Type 
III domains, which together constitute 90% of the FN 
sequence.  

Similar structural domains (Type I, II, and III) are 
found in other biomolecules, suggesting FN evolved 
through exon shuffling [165]. While the 
conformations of type I and type II repeats are 
stabilized by pairs of intramodule disulfide bridges, 
the type III repeat forms a 7-stranded β-barrel 
structure that lacks disulfide bonds, allowing it to 
undergo conformational changes. Despite being long 
encoded by a single gene, FN exists in multiple 
variants due to extensive alternative splicing [166]. 

The domains or units of FN facilitate self-assembly 
and binding to ligands such as collagen/gelatin, 
integrins, heparin, fibronectin, and other extracellular 
molecules [167]. The 500 kDa FN dimer is created 
through a pair of antiparallel isoforms due to 
alternative splicing. FN exists in multiple isoforms 
due to alternative splicing. A single FN gene 
transcript encodes 20 isoforms in humans [168]. It is 
secreted as soluble inactive dimers with disulfide 
bonds, which must be activated by interaction with 
α5β1 and other integrins [169].    

FN can be classified by its solubility into soluble 
plasma FN and cellular FN. Cellular FN is 
significantly more diverse because of splicing 
variations that are specific to different cell types and 
species [170]. 

According to its expression, it has an important 
role in embryos and adults, especially in areas of 
morphogenesis, cell migration, and inflammation. It is 
low in tumor cells, but it has a high expression in 
tissues undergoing repair [171]. FN facilitates the 
formation of fibrillar networks by binding to cell 
receptors like 5β1 integrin, organizing the actin 
cytoskeleton, and exposing additional binding sites 
for fibril formation. This process is essential for matrix 
assembly and the organization of other ECM proteins. 
FN´s ability to simultaneously bind to various ECM 
components makes it an organizer, particularly 
important for assembling a fibrillin-1 network [171].   

Fibrinogen 

It is an intricate fibrous glycoprotein composed 
of three pairs of polypeptide chains: Aα, Bβ, and γ. 
These chains are interconnected by 29 disulfide 
bonds. The fibrinogen molecules measure 45 nm in 
length and feature globular domains at both ends and, 
in the center, linked by α-helical coiled-coil rods, 
giving it a molecular weight of 340 kDa [172]. The 
E-region comprises the N-terminal ends of all six 
chains, while the D-regions consist of the C-terminal 
ends of the Bβ and γ chains along with part of the Aα 
chain, all connected by three-stranded α-helical 
coiled-coil regions. Both strongly and weakly bound 
calcium ions play roles in maintaining the structure 
and function of fibrinogen [173]. Its fibrinopeptides 
are cleaved by thrombin to convert soluble fibrinogen 
into soluble fibrin. This involves interactions between 
exposed knobs and holes, leading to the 
polymerization of fibrin monomers into protofibrils 
[174]. These protofibrils laterally aggregate to form 
fibers that branch into a three-dimensional fibrin clot 
essential for hemostasis [175]. Factor XIIIa further 
stabilizes the clot by linking fibrin molecules via 
isopeptide bonds [176].  
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The fibrinolytic system uses plasminogen, 
activated to plasmin, to degrade fibrin at specific 
lysine residues. Fibrinogen binds various proteins, 
influencing cardiovascular and ECM functions but 
not directly affecting important disorders discussed 
[177]. Research on dysfibrinogenemia and variant 
fibrinogen molecules has deepened the 
understanding of its functions [178]. Fibrinogen 
interacts with activated αIIbβ3 integrin on platelets, 
facilitating platelet aggregation for hemostasis, and it 
has adhesive and inflammatory roles through 
interactions with other cells [179].  

Fibulins  

Are a family of seven glycoproteins secreted by 
various cell types and tissues. They are intricately 
linked with basement membranes, elastic, fibers, and 
other extracellular ECM [180].  These proteins feature 
a fibulin module that allows them to release 
glycoproteins and possess a globular domain at their 
carboxy terminus. This domain is preceded by 
multiple tandem repeats of calcium-binding epithelial 
growth factor (cb-EGF) sequences. Research by 
Argraves has shown that fibulins are complex 
proteins with two distinct repeating motifs. One of 
these motifs shares similarities with anaphylatoxins 
C3a, C4a, and C5, as well as with the albumin gene 
family, while the other is like EGF [181].     

The fibulin family is divided into classes based 
on length and domain configurations: Class I and 
Class II [182]. Class I is formed by fibulins 1, 2, and 6. 
Class II encompasses the shorter (50-60 kDa) fibulins 
3, 4, 5, and 7. These shorter fibulins play a role in the 
formation of elastic fibers and are active during 
embryonic development in skeletal and 
cardiovascular tissues, with calcium ions aiding in 
this process [183].  

Fibulin-2, part of the fibulin family, is recognized 
for its ability to engage with various ECM ligands and 
modulate the interaction between cells and their 
environment [184]. On the other hand, fibulin 3 is 
primarily found in mesenchyme that transforms into 
cartilage to bone, while fibulin 4 is notably present in 
heart muscle. Fibulin 5 is expressed in blood vessels, 
and fibulin 7 is abundant in teeth, placenta, hair 
follicles, and cartilage [185–188].  All fibulins have a 
C-terminal module with an elastic-binding domain, 
which is prominent in fibulin 5 [189].     

Fibulins act not only as structural elements of the 
extracellular matrix but also as regulators of various 
cellular activities, including growth, differentiation, 
angiogenesis, and tumor development. They play a 
key role in modulating cellular behavior and function 
[190]. 

Fibrillins 

They are a group of substantial extracellular 
glycoproteins (350 kDa) comprising three isoforms: 
Fibrillin-1, fibrillin-2, and fibrillin-3. These molecules 
feature 40-80 amino acid residues and multiple cbEGF 
domains interspersed with several motifs containing 
eight cysteines (TB motifs) that bind TGFβ. No other 
extracellular proteins contain as much cysteine as 
fibrillins [191]. While fibrillin-2 and fibrillin-3 are 
found in embryonic tissues, with some presence in 
peripheral nerves, skin, and tendons, fibrillin-1 is 
present in both embryonic and adult tissues [192].  

They are the principal component of microfibrils 
in both elastic and non-elastic extracellular matrices, 
interacting closely with tropoelastin and integrins 
through direct binding. Microfibrils maintain 
structural integrity in specific organs and serve as 
scaffolds for elastogenesis in tissues like skin, lungs, 
and blood vessels [193]. Thus, fibrillin is used to 
incorporate elastin into elastic fibers. Various 
mutations, including those in the propeptide 
sequence encoded by the C-terminal domain of the 
fibrillin-1 gene, result in defective microfibril 
assembly in individuals with Marfan syndrome [194]. 
Besides fibrillins and elastin, numerous other proteins 
contribute to the makeup of microfibrils [195]. 
Fibronectin has a role in the process of binding a 
C-terminal fibrillin-1 region with the fibronectin 
gelatin-binding region. Homocysteinylation of 
fibronectin homocysteinylation reduces fibronectin 
dimers to monomers, impairing the assembly of 
fibrillin and microfibrils, like the effects of 
homocysteinylation of fibrillin-1 [196]. Fibrillins 
contain several TGF-binding motifs, making their 
structure and function akin to latent-TGF-binding 
proteins [197].    

Laminins  

Represent a fundamental group of large 
glycoproteins that function with the extracellular 
matrix, particularly in the basement membranes of 
tissue [198]. Their molecular weights typically range 
from 400 to 900 kDa, depending on the isoforms and 
subunit composition [199]. These molecules are 
composed of three distinct subunits: the first one, 
alpha (α), ranges between 160 and 400 kDa, the 
second one (β) from 120 to 210 kDa, and the third one, 
gamma (γ), from 150 to 200 kDa, which combine to 
form heterodimers. Out of the 11 identified in 
mammalian subunits, 16 different Laminin isoforms 
have been characterized [200]. Each isoform is 
designated by a code based on its subunit 
composition, enhancing its structural components 
and its function in various tissues, like Lm111 
(α1β1γ1) or Lm211 (α2β1γ1). These subunits assemble 
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into heterotrimers via a long coiled-coil region, 
forming laminins essential to the basement 
membrane's structure and function. The full hetero 
trimeric laminins vary in size but often measure 
around 800-900 kDa [201].    

Laminin exhibits differences in its 
polymerization capabilities and interactions with 
cellular receptors, contributing to basement 
membranes' specific makeup across diverse tissues 
[202]. Most basement membranes contain laminin 
isoforms, suggesting that their combination 
contributes to the dynamic properties [203]. The 
structure of laminins varies, with some forms taking 
on a cross-like configuration. These forms possess 
three short arms, each capped by LN domains, and a 
longer arm, facilitating the interaction with nidogen 
and promoting polymerization [204]. Laminin with 
truncated subunits, such as those containing the α3A, 
α4, or γ4 chains, lacks the complete short arms and 
corresponding LN domains, thus precluding 
polymerization. These perform other functions 
related to signaling and structural organization 
without contributing to the polymer scaffold [205]. 
The long arms of laminin molecules extend from the 
subunit, terminating in a set of globular domains 
(LG). These domains interact with integrins, 
dystroglycan receptors, and other cell surface 
molecules such as sulfated glycolipids and heparan 
sulfate [206]. This interaction with cellular 
components enables laminins to regulate a range of 
biological processes, including cell adhesion, 
differentiation, and migration, which are essential for 
maintaining tissue integrity and function [207]. 

Laminin mutations, particularly in Lm332, can 
lead to severe diseases such as Herlitz-type junctional 
epidermolysis bullosa (JEB), underscoring the 
importance of these glycoproteins in tissue stability 
[208]. In contrast, the α3B splice variant is present in 
various developing tissues, including the brain, and it 
contributes to polymerizing laminins with stronger 
self-association capabilities, which may enhance their 
role in tissue development and repair [209].         

Osteopontin  

It is a bone matrix glycoprotein presented in 
bone and dental tissues by mediating the interactions 
between cells and minerals [210]. Osteopontin (OPN) 
is classified as a matricellular cytokine and functions 
in processes such as bone remodeling and bone 
formation under mechanical stress [211].  Structurally, 
OPN is an intrinsically disordered protein (IDP) 
enriched with acidic residues, particularly aspartic 
and glutamic acids, which constitute about 25% of its 
sequence [212].  The molecular weight of OPN 
typically ranges between 44 and 75 kDa, depending 

on its level of phosphorylation, which significantly 
influences its functionality [213].  Phosphorylation of 
OPN is a post-translational modification, regulating 
its interaction with calcium phosphate minerals. As a 
member of the SIBLING family (small 
integrin-binding ligand N-linked glycoproteins), OPN 
contains an ASARM motif known for inhibiting 
extracellular matrix mineralization by binding 
hydroxyapatite crystals. This inhibitory activity is 
controlled by the protease PHEX, which cleaves OPN 
into inactive fragments, thus modulating its 
regulatory role in mineralization [214].   

ECM mineralization, such as 
hypophosphatemia, hyperphosphatemia, and 
hypophosphatasia [215–217]. In these models, 
full-length OPN was detected in bone extracts of Hyp 
and Fgf23 -/- mice, and its phosphorylation level was 
shown to decline. These conditions lead to an 
aging-like skeletal phenotype characterized by 
impaired mineralization and osteomalacia, where the 
ECM becomes compromised [218].   

Nidogen  

It is a sulfated glycoprotein consisting of three 
globular domains (G1, G2, and G3), a short linker, a 
rod-like domain, and is conserved across species 
[219]. These domains mediate carious interactions 
within the ECM, particularly with Collagen IV and 
Laminin, establishing a structural framework for 
tissue integrity [220]. Nidogen´s G2 domain binds to 
Collagen IV, while the G3 domain interacts with 
Laminin, facilitating the formation of stable ternary 
complexes [221]. These molecular interactions serve as 
a key element in maintaining the ECM´s architecture, 
especially at the basement membrane, contributing to 
cellular adhesion and tissue stability [222]. In addition 
to structural functions, Nidogen plays an important 
role in neuronal development, particularly in 
directing axon migration and forming neuromuscular 
junctions [223]. In Nidogen mutations, disruptions in 
nerve positioning and muscle connectivity result in 
motor and behavioral defects, further demonstrating 
its importance for proper ECM function in neural 
tissues [224]. Mice with Nidogen-1 mutations exhibit 
neurological abnormalities, including seizure-like 
symptoms and impaired muscle control [225]. 
Mutations in Nidogen have been linked to 
developmental disorders, such as Dandy-Walker 
malformation, where abnormalities in ECM integrity 
lead to defects in epithelial morphogenesis and neural 
development. Studies suggest that disruptions in the 
Nidogen-Laminin interaction contribute to a wide 
range of phenotypic variability, from subtle skeletal 
defects to severe neurological conditions [226,227].  
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Proteoglycans 

Proteoglycans are complex molecules composed 
of glycosaminoglycan (GAG) chains covalently 
attached to a core protein, primarily located on the 
cell surface or within the extracellular matrix [228]. 
They maintain tissue hydration and act as molecular 
sieves in basement membranes. Their GAG chains, 
which contain repeating disaccharides of uronic acid 
and acetylated or sulfated hexosamines, vary in 
length based on available Ser-Gly sites on the protein 
core [229]. Proteoglycans include several types, such 
as heparan sulfate, chondroitin sulfate, and keratan 
sulfate, each with distinct disaccharide compositions. 
Classified into four main types, proteoglycans exhibit 
specific cellular distributions [230].  

Serglycin is the only proteoglycan that forms 
part of the intracellular group, storing proteases with 
mast cell granules [231]. In contrast, heparan sulfate 
proteoglycans (HSPGs) are primarily associated with 
cell surfaces, where they support growth factor 
functions and interactions within the basement 
membrane [232]. HSPGs facilitate cellular 
communication and sustain morphogen gradients 
essential for development and regeneration by 
binding to growth factors like FGF and VEGF and 
structural ECM components [233]. Also, 
proteoglycans containing chondroitin and dermatan 
sulfate (CSPGs and DSPGs) become predominant 
[234]. These proteoglycans have an important role in 
the structure of complex matrices, including cartilage, 
brain, intervertebral discs, tendons, and corneas. Their 
functions include providing viscoelasticity, retaining 
water, maintaining osmotic pressure, ensuring 
organized collagen arrangement, and preserving 
corneal transparency [235]. Additionally, the ECM 
hosts the largest class of proteoglycans, small 
leucine-rich proteoglycans (SLRPs), which are 
abundant at the gene level. SLRPs act as structural 
elements and signaling molecules, especially during 
tissue remodeling associated with cancer, diabetes, 
inflammation, and atherosclerosis [236]. By 
interacting with receptor tyrosine kinases (RTKs) and 
toll-like receptors, SLRPs influence migration, 
proliferation, immune responses, apoptosis, 
autophagy, and angiogenesis [237].  

Syndecan  

It is a family that comprises transmembrane 
proteoglycans that connect cells to the ECM. 
Syndecans feature an ectodomain that binds GAG 
chains and a cytoplasmic domain with a PDZ-binding 
motif that anchors them to the cytoskeleton [238]. 
Syndecans are involved in a wide range of cellular 
functions, including growth factor binding, formation 
of morphogen gradients, endocytosis, and lipoprotein 

clearance, particularly through Syndecan-1 [239]. 
Proteolytic shedding of Syndecans, induced by 
cytokines and enzymes, regulates their presence on 
the cell surface and within the pericellular 
environment [240]. Shed syndecan-1, particularly in 
cancer, promotes tumor growth and metastasis, while 
syndecan-2 can inhibit angiogenesis by reducing 
endothelial cell migration [241,242]. A novel function 
of syndecan-1 includes nuclear translocation in cancer 
cells, where it affects gene transcription by 
modulating enzymes such as histone acetyltransferase 
(HAT), promoting tumorigenic gene expression [243].        

Glypicans (GPCs)  

HSPGs are attached to the plasma membrane by 
a glycosylphosphatidylinositol (GPI) anchor [244].  Six 
genes encode glypicans, divided into two groups with 
orthologs found across species. Glypicans have 
unique features, including GAG attachment sites close 
to the membrane. Allowing their HS chains to bind 
morphogens like Hedgehog (Hh), Wnt, and FGF and 
modulate cell signaling [245,246]. Glypicans undergo 
two types of processing; the first one is furin-like 
proteases that cleave to the ectodomain, creating two 
disulfide-linked subunits, and the second one, 
extracellular lipases, like Notum, release glypicans 
from the membrane, regulating morphogen gradients 
such as Wnt and BMP [247,248]. Functionally, 
glypicans regulate growth and angiogenesis and have 
implications for cancer. For instance, GPC3 mutations 
cause Simpson-Golabi-Behmel syndrome, which 
involves overgrowth and developmental 
abnormalities. While initially thought to inhibit 
IGF-II, GPC3 was later shown to suppress Hh 
signaling, binding Indian and Sonic Hh proteins and 
competing with the Patched receptor [249,250]. This 
suppression depends on HS chains and their 
sulfation. Glypicans ´complex regulation by proteases 
and lipases suggests evolving insights into their roles 
in biological processes [251]. 

Betaglycan  

Also called the TGFβ type III receptor (TGFβ3), it 
is a transmembrane proteoglycan that serves as a 
c-receptor for the TGFβ superfamily, including 
growth factors such as activins and BMPs [252]. 
Betaglycan´s extracellular domain has multiple GAG 
attachment sites and protease-sensitive sequences, 
while its short intracellular domain is rich in serine 
and threonine residues, allowing for phosphorylation 
[253]. The ectodomain contains a unique zona 
pellucida (ZP) module that, unlike other ZP proteins, 
does not polymerize but instead facilitates TGFβ 
ligand binding [254]. Betaglycan enhances the affinity 
of TGFβ isoforms for their receptors and is essential 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

6823 

for TGFβ2 signaling. It also acts as a suppressor in 
cancer, blocking NF-κB-mediated expression of 
matrix metalloproteinase 2 (MMP2), which limits 
tumor aggressiveness [255].  

Perlecan  

It is a large, modular heparan sulfate 
proteoglycan (HSPG) essential for various biological 
processes due to its structural complexity and 
widespread tissue distribution [256]. This 500 kDa 
core protein consists of five domains with homologies 
to several molecules, and it interacts with various 
receptors and ligands, making it integral to vascular 
and extracellular matrix biology [257]. Its N-terminal 
heparan sulfate chains promote angiogenesis by 
binding and presenting growth factors like VEGFA 
and FGF to their receptors, while protease cleavage 
can release pro-angiogenic factors, impacting blood 
vessel formation and repair. Perlecan´s C-terminal 
domain V, endorepellin, functions oppositely to its 
N-terminal proangiogenic region by inhibiting 
endothelial migration and angiogenesis [258]. 
Through dual receptor targeting of VEGFR2 and α2β1 
integrin, endorepellin suppresses endothelial cell 
migration, induces autophagy, and alters cellular 
structures, impacting cancer, inflammation, and 
vascular pathologies [259].   

Aggrecan  

It is a vital structure proteoglycan in cartilage, 
forming large, resilient complexes with hyaluronan 
and link proteins that allow cartilage to withstand 
compression [260]. It includes multiple domains, each 
serving a specific function: the G1 and G2 domains 
stabilize aggrecan´s attachment to hyaluronan, 
forming robust networks with collagen that reinforce 
cartilage. The central GAG-rich domain, filled with 
negatively charged CS and KS chains, attracts water, 
providing hydration and compressive resistance to 
cartilage [261]. The G3 domain, with EGF-like and 
lectin elements, enables aggrecan to bind to other 
matrix proteins like tenascins and fibulins, enhancing 
structural support and mechanosensitivity [262]. 
Genetic defects in aggrecan, such as those seen in 
chondrodystrophies, weaken cartilage and associated 
health tissues, emphasizing its role in skeletal 
development [263]. Aggrecan also has functions in the 
brain, where it forms part of perineuronal nets around 
cortical interneurons. Here, it may aid neural 
maturation, stabilize synaptic connections, and 
protect neurons from oxidative stress, indicating roles 
beyond cartilage integrity in maintaining neural 
health [264].  

Versican 

The largest hyalecan family member has a 
central role in tissue organization and inflammation. 
Encoded by the VCAN gene, versican is structurally 
like aggrecan but includes unique features, such as an 
N-terminal IgG fold and link modules that bind 
hyaluronan with high affinity [265]. It contains central 
GAGα and GAGβ domains, which are variably 
spliced into isoforms V0, V1, V2, V3, and a newly 
identified V4 associated with breast cancer  [266,267]. 
These isoforms exhibit tissue-specific expression, 
influencing cell adhesion and signaling, particularly 
in the heart, brain, and vascular tissue   [268,269]. 
Versican´s C-terminal domain includes EGF-like and 
lectin motifs, connecting it with cell surface 
glycoproteins and stabilizing supramolecular 
structures at the plasma membrane. Versican 
supports inflammation by interacting with receptors 
like CD44 and Toll-like receptors, facilitating 
leukocyte migration during tissue repair [270].  
Proteolytic processing by enzymes, such as MMPs 
and ADAMTs, modifies versican´s function, 
influencing cell adhesion and migration, and higher 
levels are linked to tumor growth and inflammation 
in diseases like leiomyosarcoma [271].    

SLRPs  

They are a large family of proteoglycans with 18 
gene variants, known for their small protein cores and 
leucine-rich repeats (LRRs). They are broadly 
expressed in various extracellular matrices, especially 
around developing organs, where they shape and 
stabilize tissue structure [272]. SLRPs are categorized 
into five classes based on genetic similarities, with 
Classes I-III containing GAG chains that help them 
bind to collagen and stabilize collagen fibrils, thereby 
protecting them from enzymatic degradation [273]. 
The family´s best-known member, decorin, binds 
collagen type I and is essential for proper collagen 
fibrillogenesis. SLRPs also interact with various 
receptors and signaling pathways, including TGF-β, 
influencing cellular processes [274]. They show 
structural diversity in GAG chains, allowing them to 
support a wide range of functions across tissues, and 
may be transcriptionally co-regulated, indicating a 
coordinated role in development and tissue repair 
[273]. SLRPS are divided into five groups.  

Class I SLRP 

Decorin (PG40 or DSPG1), the most studied 
SLRP, binds collagen fibrils, stabilizing tissue 
structure and affecting collagen´s biomechanical 
properties, which is important for skin integrity and 
connective tissues [275]. Mice without decorin show 
weakened skin, like Ehlers-Danlos syndrome [276]. 
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Decorin also has anti-cancer properties, acting as a 
growth suppressor by binding to growth receptors 
like EGFR and Met, inhibiting tumor progression and 
blood vessel formation [277,278].   

Biglycan, decorin´s close relative, has 
pro-inflammatory roles through interactions with 
immune receptors, impacting immune response and 
tissue injury recovery [279].  

Asporin, another SLRP, regulates bone 
formation and antagonizes cartilage formation via 
TGF-β signaling, with genetic variations linked to 
osteoarthritis severity [280].  

Some SLRPs, including ECM2, are less 
understood but are thought to have distinct roles 
based on structural homology. SLRPs´ versatile 
interactions in collagen assembly, immune response, 
and disease progression [281].  

Class II SLRP 

This class consists of five distinct SLRPs, which 
can be further categorized into three subgroups based 
on protein homology: subgroup A (fibromodulin and 
lumican), subgroup B (PREPL and keratocan), and 
subgroup C (Osteoadherin) [282]. Despite their 
functional diversity, all Class II SLRPs share a 
conserved genomic structure, composed of three 
exons, with the largest exon encoding most of their 
leucine-rich repeats (LRRs). These proteins also 
contain a charged N-terminal region enriched in 
tyrosine sulfate residues, contributing to their anionic 
properties [283]. A defining feature of these SLPRs is 
their keratan sulfate and polylactosamine 
modifications, which contribute to their role in 
growth factor signaling. Notably, corneal keratan 
sulfate binds with high affinity to FGF2 and sonic 
hedgehog (SHH), suggesting its involvement in 
morphogen gradient formation [284]. Additionally, 
SLRPs interact with fibrillar collagens, reinforcing 
tissue structure and mechanical strength.  

Fibromodulin was originally identified in 
cartilage. It is also notable for delaying collagen fibril 
formation and is necessary for maintaining ECM 
stability in tissues such as cartilage and tendons [285]. 
Its N-terminal domain contains tyrosine sulfate 
residues, enabling dual functions: collagen 
cross-linking and growth factor binding, including 
FGF, VEGF, and various cytokines [286]. It binds the 
same region of collagen I as lumican and is 
particularly important in regulating fibrillogenesis 
during development [287]. Fibromodulin also 
activates the classical complement pathway, 
supporting immune modulation and structural 
stability [288].     

Lumican, also known for its role in maintaining 
corneal transparency, helps organize collagen fibrils, 

particularly in the cornea, where it preserves the 
spacing necessary for visual clarity [289]. Lumican 
also influences cancer and inflammation; in cancer, it 
is often upregulated in tumor stroma, especially in 
breast carcinomas and melanomas, and inhibits tumor 
progression [290]. It binds neutrophils during 
transmigration across endothelial barriers, enhancing 
neutrophil response in injury and wound healing 
[291].   

PRELP (Proline/Arginine-Rich END Leucine- 
Rich Repeat Protein) primarily functions in 
connective tissues near basement membranes [292]. 
Its positively charged N-terminal domain binds 
heparin and heparan sulfate, creating structural links 
between ECM and basement membranes [293]. 
PRELP also inhibits NF-κB signaling, which reduces 
osteoclast formation, making it an effective 
antiresorptive molecule, as seen in osteoporosis 
models [294].  Additionally, PRELP prevents 
complement membrane attack complex formation, 
protecting vascularized tissues in inflammatory 
diseases [295].   

Keratocan is essential for corneal transparency, 
and keratocan supports proper stromal collagen 
organization, which is necessary for corneal structure 
[296]. Although mice deficient in keratocan show 
normal corneal openness, they have irregular collagen 
fibril spacing, underscoring keratocan´s role in 
collagen packing [297].  Inflammation studies reveal 
that keratocan assists in chemokine gradient 
formation, promoting neutrophil recruitment during 
corneal injury and inflammation [298].    

Osteoadherin (Osteomodulin) is highly 
expressed in mineralized tissue, and osteoadherin 
contributes to bone matrix organization [299]. With 
numerous tyrosine sulfates and acidic residues in its 
N-terminal domain, osteoadherin interacts with 
growth factors, mimicking heparin´s binding 
properties [300]. It facilitates osteoblast attachment, 
particularly via αvβe integrin, and shows a 
glycosylation pattern change during endochondral 
bone formation, suggesting a targeted role in 
mineralization and bone matrix integrity [301].  

Class III SLRP  

Class III consists of three closely related 
members: epiphycan, opticin, and osteoglycin. Unlike 
other SLRP classes, they have a distinct structure, 
containing only seven LRRs instead of the typical 
10-12 found in other SLRP classes. Like Class II 
members, Class III SLPRs possess N-terminal 
consensus sequences for tyrosine sulfation, which 
likely serve as signals for keratan sulfate attachment 
during protein synthesis and post-translational 
modification [302].  
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Epiphycan is a glycoprotein found in epiphyseal 
cartilage and is the mammalian counterpart of avian 
PG-Lb [303]. It functions in chondrogenesis, 
distributed throughout the growth plate during 
cartilage development [304]. While mice with this 
proteoglycan show mild bone defects, epiphycan/ 
biglycan double-knockout mice have shorter bones 
and develop osteoarthritis, suggesting a cooperative 
function [305]. It is also part of the collagen IX 
intercom, indicating a role in growth plate 
organization [306].  

Osteoglycin, also known as mimecan, was first 
identified in bone and later as a keratan sulfate SLRP 
in the cornea [307]. Although multiple mRNA 
variants are produced from the Ogn genes, they 
generate a single protein core [308]. Besides, the 
inhibition of this gene in mice shows increased 
collagen fibril diameter in the cornea and dermis, like 
other SLRP-related phenotypes [309]. Osteoglycin 
undergoes proteolytic processing in vivo, particularly 
by BMP-1/Tolloid-like metalloproteinases, which 
enhances its role in collagen fibrillogenesis regulation. 
Nevertheless, this molecule is involved in myocardial 
integrity, cardiac remodeling, and injury response, 
interacting with ECM glycoproteins [310]. 
Additionally, osteoglycin functions as an anabolic 
bone factor secreted by muscle cells and may serve as 
a predictor of cardiovascular events [311].  

Class IV SLRP 

This is a non-canonical class of the SLPRs, and it 
includes the following chondroadherin:  [312] and 
nyctalopin [313].  

Chondroadherin is primarily found in cartilage, 
linking chondrocytes to the ECM through interactions 
with α2β1 integrin and heparan sulfate chains [314]. It 
also binds collagens II and VI, and mice knockout of 
this molecule exhibit cartilage and bone 
abnormalities, including disrupted collagen network 
assembly and weakened mechanical properties in 
cartilage [315,316].   

Nyctalopin is unique among SLRPs as it is 
GPI-anchored to the plasma membrane, and X-linked- 
Mutations in NYX cause X-linked congenital 
stationary blindness, affecting night vision, myopia, 
and visual acuity [317]. In the retina, nyctalopin 
interacts with TRPM1 and mGluR6, forming a 
supramolecular complex for visual synapse signaling 
[318].   

Class V SLRP 

This lesser-known group of non-canonical SLRPs 
consists of podocan and podocan-like. 

Podocan was first identified due to its elevated 
presence in podocytes from sclerotic glomeruli in 

HIV-associated kidney disease [319].  It is found in the 
glomerular basement membrane, proximal tubules, 
and aortic tissue, hinting at a role in vascular healing. 
It functions as a suppressor of smooth muscle cell 
migration and proliferation, potentially influencing 
atherosclerosis, much like biglycan [320]. In 
podocin-deficient cells, Wnt signaling activity is 
heightened, whereas cells with increased podocin 
expression show reduced Wnt signaling, a trait 
observed in other SLRPs [321]. Like decorin and 
biglycan, podocin interacts with collagen I and 
contributes to cell growth regulation through p21 
WAF1 activation [322].   

Metalloproteases  

Matrix metalloproteinases (MMPs) are 
zinc-dependent endoproteases involved in ECM 
remodeling, which is involved in protein degradation, 
tissue homeostasis, and cellular signaling [323]. These 
enzymes regulate cell proliferation, migration, 
differentiation, apoptosis, and angiogenesis, 
influencing tissue repair and immune responses [324]. 
However, MMPs can modify bioactive molecules on 
the cell surface, affecting various signaling that 
govern cellular behavior [325]. While MMP 
expression and activity fluctuate in normal 
physiological processes, such as pregnancy and 
wound healing, their dysregulation has been linked to 
pathological conditions, including cardiovascular 
diseases, musculoskeletal disorders, and cancer [326]. 
In malignancies, MMPs contribute to tumor 
progression and invasiveness by degrading ECM 
barriers and facilitating cancer cell migration and 
metastasis [327].   

Most of them are produced by a variety of 
tissues and cell types, including fibroblasts, 
osteoblasts, endothelial cells, vascular smooth muscle 
cells, macrophages, neutrophils, lymphocytes, and 
cytotrophoblasts [328]. Their activity is tightly 
controlled by tissue inhibitors of metalloproteinases 
(TIMPs), which regulate ECM turnover and prevent 
excessive degradation [329]. However, an imbalance 
between MMPs and TIMPs, either through increased 
MMP expression or reduced TIMP levels, can 
contribute to pathological conditions, including 
cardiovascular diseases, osteoarthritis, and cancer.  

Collagenases  

Collagenases (MMP-1, MMP-8, MMP-13, and 
MMP-18) degrade fibrillar collagens I, II, and III by 
first unwinding their triple-helical structure and then 
hydrolyzing peptide bonds [330]. Their hemopexin 
domain is necessary for cleaving intact collagen, while 
the catalytic domain processes non-collagen 
substrates. These enzymes are important for ECM 
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remodeling, tissue repair, and homeostasis, but their 
dysregulation is linked to arthritis, fibrosis, and 
cancer [331].  

MMP-1 is encoded in chromosome 11 and is 
involved in collagen degradation and inflammation 
[332]. Its expression in inflammatory conditions and 
autoimmune diseases contributes to delayed wound 
healing [333].  MMP-1 is also linked to cancer 
progression, with certain genetic variations associated 
with poor prognosis [334]. Anti-fibrotic agents like 
stratifin and kynurenic acid influence MMP-1 
expression, enhancing tissue repair and reducing 
fibroids [335]. Overall, MMP-1 regulation affects both 
tissue remodeling and disease progression [336].  

MMP-8, also known as collagenase-2 or 
neutrophil collagenase, is encoded in chromosome 11 
and was first identified in a cDNA library from 
leukocytes of a leukemia patient [337]. It degrades 
interstitial collagens I, II, and III, with its activation 
regulated by other MMPs like MMP-3 and MMP-10. 
MMP-8 appears early in dermal wound healing, and 
its deficiency in mice leads to delayed healing and 
increased inflammation [338,339]. In periodontal 
disease, MMP-8 contributes to connective tissue 
breakdown, and its presence in saliva may serve as a 
diagnostic marker [340].  

MMP-13, also known as collagenase-3, is 
encoded in chromosome 11 and efficiently degrades 
type II collagen [341]. It is overexpressed in 
osteoarthritic cartilage, contributing to disease 
progression, and is regulated by factors like miR-411 
and dietary fatty acid ratios [342]. MMP-13 is 
implicated in lung diseases, brain astrocyte migration, 
and liver fibrosis, where targeted gene delivery has 
shown potential therapeutic effects [343]. It is also 
frequently overexpressed in tumors, promoting 
metastasis, particularly in nasopharyngeal cancer 
[344].    

MMP-18, also known as collagenase-4, is 
encoded in chromosome 12 and shares structural 
similarities with MMP-1, -3, and -11. It has a unique 
dual-cleavage activation site and is expressed in 
various tissues but not in the brain, skeletal muscle, 
kidney, liver, or leukocytes [345].  MMP-18 is found in 
migrating macrophages and axonal growth, 
particularly in response to skin explants [346].  Its 
activity is linked to ECM breakdown, influencing 
nerve growth and regeneration [347].   

Gelatinases 

This group includes MMP-2 and MMP-9, which 
share structural similarities with other MMPs but 
have a unique collagen-binding domain essential for 
gelatin degradation. They are key enzymes in ECM 
breakdown and have a broad range of non-matrix 

protein targets [348]. Beyond their role in ECM 
remodeling, they are involved in embryonic 
development, angiogenesis, vascular diseases, 
inflammation, infections, neurodegenerative 
disorders, and cancer progression. Their diverse 
functions make them significant regulators in both 
normal and pathological processes [349].  

MMP-2, also known as gelatinase-2, is on 
chromosome 16 and degrades collagen through a 
two-phase process [350]. It accumulates at the cell 
surface via the MT1-MMP/TIMP-2 complexes, 
contributing to localized collagen breakdown in 
angiogenesis, tissue repair, and inflammation [351]. 
MMP-2 is implicated in tumor invasion and 
metastasis, particularly in esophageal cancer, and 
targeting it with siRNA has shown promise in 
reducing lung cancer growth. In glioblastomas, 
MMP-2 interacts with α5β1 integrin, influencing 
IL-6/stat3 signaling and tumor progression [352].  

MMP-9, or gelatinase-B, is a type IV collagenase 
located on chromosome 20 and is produced by 
various cell types, including epithelial cells, 
fibroblasts, and immune cells [353]. It acts in 
inflammatory cell migration and tissue remodeling 
[354]. In cholesteatoma, MMP-9 expression is elevated 
in tissues rather than serum, correlating with 
inflammatory severity [355]. Moreover, it is linked to 
esophageal cancer progression, with its activity 
correlating with vascular invasion [356].   

Stromelysins 

MMP-3, MMP-10, and MMP-11, also known as 
Stromelysins 1, 2, and 3, share the same domain 
structure as collagenases but do not cleave interstitial 
collagen [357]. MMP-3 and MMP-10 have similar 
structures and substrate specificities, actively 
degrading ECM components, particularly in proMMP 
activation [358]. In contrast, MMP-11 has weak 
ECM-degrading activity and is more distantly related. 
Unlike MMP-3 and MMP-10, which are secreted as 
inactive proenzymes, MMP-11 is activated 
intracellularly by furin and secreted in its active form 
[359].   

MMP-3 is encoded on chromosome 11 and 
functions as a secretory endopeptidase that degrades 
ECM components, including various collagens, 
proteoglycans, elastin, and fibronectin [360,361]. It can 
activate other MMPs involved in tissue remodeling 
and has been detected in cell nuclei, suggesting a role 
in gene regulation and apoptosis. MMP-3 is 
implicated in post-traumatic osteoarthritis, where 
fibronectin fragments upregulate its expression, 
accelerating cartilage degradation [362]. Furthermore, 
it contributes to atherosclerosis, tumor growth, and 
metastasis [363]. It may interact with 
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neurodegeneration by inducing mitochondrial 
oxidative stress and neuronal death [364].   

MMP-10 is a secreted protein located on 
chromosome 11. It has multiple functions in various 
diseases, such as pulmonary fibrosis, where its serum 
levels correlate with lung function and disease 
severity [365]. MMP-10 is also implicated in 
respiratory syncytial virus infections, peripheral 
arterial disease, and wound healing [366]. It may 
contribute to tumor progression, metastasis, and liver 
regeneration, particularly in hepatocellular carcinoma 
[367].  

MMP-11 is a protease with a gene locus on 
chromosome 22. It is secreted in its active form after 
intracellular activation, unlike other MMPs, which 
require extracellular activation [368]. MMP-11 acts in 
tissue remodeling during embryonic development, 
wound healing, and tumor invasion [369]. It has been 
linked to poor prognosis in various cancers, including 
breast, esophageal, and oral squamous cell carcinoma, 
with its elevated expression associated with tumor 
progression and metastasis [370,371]. However, some 
studies suggest it may inhibit metastasis in certain 
cancer models, indicating a complex role in cancer 
biology [372].   

Matrilysins 

MMP-7, or matrilysin-1, is a small protease 
located on chromosome 11. It appears in tissue 
remodeling, particularly in the uterus and following 
injury, by degrading ECM components and cleaving 
cell surface molecules like Fas-ligand and E-cadherin 
[373]. MMP-7 has dual effects on apoptosis, either 
inducing or inhibiting it, and is involved in immune 
response in the intestine. Studies suggest its 
involvement in chronic tonsillitis and idiopathic 
pulmonary fibrosis [374]. MMP-7 may also be a key 
factor in cancer progression, especially in oral 
squamous cell carcinoma [375].  

MMP-26 (matrilysin-2), or endometase, is 
located on chromosome 11 and shares structural 
similarities with macrophage metalloelastase. It is 
primarily expressed in the placenta and uterus, but it 
is found in various tumor cell lines and malignant 
tumors, including those of epithelial origin [376]. 
MMP-26 exhibits broad proteolytic activity, targeting 
substrates like collagen, fibronectin, and gelatin, and 
is present in activating proMMP-9 [377]. As part of 
this, MMP-26 interacts in tissue remodeling, 
angiogenesis, and tumor progression, particularly in 
tumor invasion [378]. Expression of MMP-26 is linked 
to granulocyte-macrophage colony-stimulating factor 
(GM-CSF)-induced tumor invasion and may serve as 
a marker for metastasis in pancreatic adenocarcinoma 
[379]. TIMP-2 and -4 regulate MMP-26, with TIMP-4 

being a stronger inhibitor [380].  

Membrane-type MMPs 

This group consists of four transmembrane 
MMPs (MMP-14, -15, -16, and -24) and two 
GPI-anchored MMPs (MMP-17 and -25). These 
enzymes are activated intracellularly, with active 
forms expressed on the cell surface. MT-MMPs 
feature a membrane anchoring domain and display 
protease activity at the cell surface, making them 
efficient pericellular proteolytic machines. All 
MT-MMPs, except MMP-17, can be active proMMP-2. 
MMP-14 is also capable of activating proMMP-13 on 
the cell surface.  

MMP-14 (MT1-MMP) is a transmembrane 
metalloproteinase encoded on chromosome 14, 
involved in extracellular matrix degradation and cell 
migration [381]. It activates proMMP-2, contributing 
to tumor invasion, metastasis, and tissue remodeling 
[382]. Elevated MT1-MMP levels correlate with 
aggressive cancer phenotypes, including head and 
neck squamous cell carcinoma and salivary gland 
carcinomas [383]. Deficiency in MT1-MMP leads to 
developmental abnormalities, emphasizing its role in 
skeletal and connective tissue integrity. Also, 
MT1-MMP is implicated in atherosclerotic plaque 
instability [384].  

MMP-15 (MT2-MMP), encoded on chromosome 
16, is a membrane-bound metalloproteinase 
implicated in extracellular matrix remodeling and 
MMP-2 activation, influencing tumor invasion [385]. 
It is indispensable for placental vasculogenesis, as its 
deficiency leads to embryonic lethality in mice. In 
colorectal cancer, MMP-15 is upregulated during 
early tumorigenesis, showing stromal localization 
[386]. However, in supraglottic carcinoma, MMP-14 
appears more influential in tumor progression [387]. 
Elevated MT2-MMP expression correlates with 
increased invasion in laryngeal cancer [388].   

MMP-16 (MT3-MMP) is located on chromosome 
8 and is a membrane-bound protease that modulates 
MMP-2 and -9 activation, influencing tumor invasion 
and cell migration [389]. Its elevated expression in 
melanoma and bladder cancer correlates with adverse 
outcomes, while miR-146a and miR-155 regulate its 
activity in breast cancer and cardiac progenitor cells 
[390,391]. In neonatal lung development, MMP-16 
polymorphisms impact susceptibility to 
bronchopulmonary dysplasia. Experimental 
inhibition of MMP-16 restricts cancer proliferation 
and enhances regenerative potential [392]. 

MMP-17 (MT4-MMP), encoded on chromosome 
12, is a GPI-anchored metalloproteinase distinct from 
MT1-MMP, lacking a cytoplasmic tail and not 
activating proMMP-2 [393]. It features a unique 
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nine-residue insertion necessary for furin-mediated 
activation. Expressed in multiple tissues, including 
leukocytes, its role may involve modulating growth 
factors and inflammatory mediators like TNF-α [394]. 
MMP-17 is overexpressed in various cancers, 
particularly breast cancer, and plays an important role 
in tumor progression [395].   

MMP-24 (MT5-MMP), encoded on chromosome 
20, is a membrane-associated metalloproteinase 
implicated in tumorigenesis and neural plasticity 
[396]. It facilitates proMMP-2 activation, contributing 
to malignancies such as glioblastoma. The brain 
regulates neural stem cell quiescence by cleaving 
N-cadherin and influences neuropathic pain by 
modulating sensory neuron plasticity [397]. 
Additionally, it mediated neuro-immune interactions 
in nociceptive signaling, affecting thermal pain 
responses. Elevated MMP-24 expression in breast 
cancer suggests its role in tumor progression, 
invasion, and angiogenesis [398].  

MMP-25 (MT6-MMP), encoded on chromosome 
16, is a GPI-anchored enzyme expressed in leukocytes 
and certain cancers [399]. It exists as a disulfide-linked 
homodimer, with its stability influenced by cysteine 
residues. MT6-MMP is localized in lipid rafts and 
translocates to the cell surface during neutrophil 
apoptosis, suggesting roles in immune response and 
IL-8 secretion [400]. It exhibits gelatinolytic activity 
and weak MMP-2 activation but does not promote cell 
migration. Elevated MMP-25 expression in 
glioblastomas, colon, urothelial, and prostate cancers 
implicates it in tumor progression [401].  

Non-classified MMPs 

MMP-12 is a macrophage metalloelastase 
located on chromosome 11 and interacts in immunity, 
inflammation, and tissue remodeling [402,403]. It 
facilitates interferon-α secretion, modulating antiviral 
responses, and contributing to asthma-related lung 
inflammation [404]. MMP-12 disrupts the blood-brain 
barrier in cerebral ischemia, exacerbating brain injury 
[405]. Its overexpression in head and neck squamous 
cell carcinoma correlates with extracapsular spread, 
making it an interest as a prognostic marker [406].   

MMP-19, or stromelysin-4 or RASI-1, is an ECM 
proteinase located on chromosome 12 and is involved 
in tissue remodeling, fibrosis, and cancer. It regulates 
angiogenesis, inhibits pulmonary fibrosis, and 
contributes to liver fibrosis [407]. In cancer, MMP-19 
promotes tumor progression in gallbladder 
carcinoma, colorectal cancer, and NSCLC but exhibits 
tumor-suppressive activity in nasopharyngeal 
carcinoma[408–410]. Genetic alterations in MMP-19 
have been linked to congenital optic disc anomalies 
[411].   

MMP-20, also known as enamelysin, is a 
tooth-specific MMP encoded by a gene on 
chromosome 11, clustered with several other MMP 
family members [412]. It degrades amelogenin and 
other enamel matrix proteins, having a role in enamel 
biomineralization [413]. Mutations in MMP-20 lead to 
amelogenesis imperfect, resulting in defective enamel 
formation [414,415]. MMP-20 also processes aggrecan 
and cartilage oligomeric matrix protein, contributing 
to tooth matrix remodeling [416].   

MMP-21, an MMP with gelatinolytic activity 
located on chromosome 1, is involved in 
embryogenesis and cancer progression. It is highly 
expressed in invasive carcinomas and correlates with 
our prognosis in oral, esophageal, and colorectal 
cancers [417–419]. In Merkel cell carcinoma, MMP-21 
is linked to less aggressive tumors, while MMP-10 is 
associated with disease progression [420]. In 
pancreatic cancer, MMP-21 marks differentiation 
rather than invasiveness and is upregulated by 
epidermal growth factor [421].    

MMP-22, located on chromosome 1, is linked to 
tumor suppression and shares a locus with MMP-21. 
It contains domains similar to stromelysin-3 and 
features a Zn+2-binding region necessary for 
activation [422]. Unlike the MMPs, it lacks the 
“cysteine switch” for autocatalytic activation. 
MMP-22 produces multiple mRNA variants through 
alternative splicing [423].  

MMP-23, located on chromosome 1, has a 
unique domain structure distinct from other MMPs. It 
lacks a conventional signal sequence, hemopexin-like 
repeats, and typical MPP subclass features. Instead, it 
contains cysteine-rich immunoglobulin-like domains 
and functions as a type II membrane protein [424].  
MMP-23 is predominantly expressed in reproductive 
tissues. It is also upregulated in MDA-MB-231 breast 
cancer cells [425].   

MMP-27, a stromelysin located on chromosome 
11, is poorly secreted and primarily retained in the 
endoplasmic reticulum. It is expressed in 
B-lymphocytes, endometrial macrophages, and 
endometriotic lesions, with peak expression during 
menstruation [426]. In cancer, MMP-27 is more 
abundant in high-grade breast tumors, particularly in 
the MDA-MB-468 cell line. Its expression may 
contribute to breast cancer progression. Despite the 
structural resemblance to MT-MMPs, MMP-27 is not 
an integral membrane protein and remains stored 
until needed [427].   

MMP-28 (epilysin) is a widely expressed MMP 
involved in tissue homeostasis, wound healing, and 
repair, located on chromosome 17 [428]. It is found in 
the epidermis and various organs and is linked with 
embryo implantation, cardiac remodeling, and 
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periodontal health [429]. In myocardial infarction, 
MMP28 deficiency impairs healing, leading to cardiac 
rupture. Unlike other MMPs, it is downregulated in 
colon cancer, suggesting a protective role. And its 
expression remains elevated in osteoarthritis and 
rheumatoid arthritis  [430,431].   

All MMPs are summarized in Table 4.  

Glycosaminoglycans 

Glycosaminoglycans (GAGs) are negatively 
charged, linear polysaccharides composed of 
repeating disaccharide units, where hexosamines are 
linked to hexuronic acids or galactose via O-glycosidic 
bonds.  

Based on disaccharide composition and sulfation 
patterns, GAGs are classified into four main types: 
chondroitin sulfate (CS) and dermatan sulfate (DS), 
heparin and heparan sulfate (HS), hyaluronan (HA), 
and keratan sulfate (KS). Most GAGs contain 
hexuronic acids, such as glucuronic acid (GlcA) in 
CH, HS, and HA, or iduronic acids (IdoA) in DS and 
heparin, while KS incorporates galactose instead. 
Hexosamine units vary, with N-acetylglucosamine 
(GlcNAc) found in HA, HS, and KS, and 
N-acetylgalactosamine (GalNAc) present in CS and 
DS.  

 

Table 4. All collagen types are divided into different groups that are classified. N.d. (Not defined). 

Metalloproteases 
Group of 
Metalloproteases 

Subtype Chromosome Function Implication 

Collagenase MMP-1 11 Collagen degradation Inflammation, autoimmune diseases 
MMP-8 11 Collagen type I, II and III degradation Scarring and periodontal disease 
MMP-13 11 Type II collagen degradation Osteoarthritis, pulmonary disease, astrocyte migration, liver fibrosis, metastasis, 

nasopharyngeal cancer 
MMP-18 12 ECM degradation Macrophage migration, axonal growth 

Gelatinase MMP-2 16 Localized two-phase collagen 
degradation 

Angiogenesis, tissue repair, inflammation, metastasis, esophageal and lung 
cancer 

MMP-9 20 ECM degradation Inflammation, tissue remodeling, esophageal cancer 
Stromelysins MMP-3 11 Degradation of collagen, proteoglycans, 

elastin and fibronectin 
Tissue remodeling, gene regulation, apoptosis, osteoarthritis, atherosclerosis, 
metastases 

MMP-10 11 N.d. Pulmonary fibrosis, viral infections, arterial disease, scarring, metastasis, 
hepatocellular carcinoma 

MMP-11 22 N.d. Tissue remodeling in embryonic development, scarring, breast cancer, 
esophageal cancer, oral squamous cell carcinoma 

Mathylisins MMP-7 11 Fas and E-cadherin ligand cleavage Tissue remodeling, dual involvement in apoptosis, chronic tonsillitis, idiopathic 
pulmonary fibrosis 

MMP-26 11 Degradation of collagen, fibronectin and 
gelatin. MMP-9 activation 

Tissue remodeling, angiogenesis, tumor invasion, pancreatic adenocarcinoma 

Membrane type MMP-14 14 Modulates MMP-2 activation Cell migration, tumor invasion, metastasis, aggressive head and neck carcinoma, 
salivary gland carcinoma 

MMP-15 16 Modulates MMP-2 activation Placental vasculogenesis, colorectal cancer, supraglottic carcinoma, laryngeal 
cancer 

MMP-16 8 Modulates activation of MMP-2 and 
MMP-9 

Melanoma, bladder cancer, breast cancer, bronchopulmonary dysplasia 

MMP-17 12 Modulation of growth factors and 
inflammatory mediators 

Breast cancer 

MMP-24 20 Activation by MMP-2, N-cadherin 
cleavage 

Tumorigenesis, neural plasticity, nociceptive signaling, glioblastoma, 
angiogenesis 

MMP-25 16 Gelatinolytic, MMP-2 activation Apoptosis, immune response, glioblastomas, colon, urothelial and prostate 
cancer 

Not classified MMP-12 11 Interferon-α secretion Immunity, inflammation, cerebral ischemia, head and neck squamous cell 
carcinoma 

MMP-19 12 N.d. Angiogenesis, fibrosis, colorectal cancer, lung cancer, gallbladder carcinoma, 
nasopharyngeal carcinoma 

MMP-20 11 Degradation of amelogenin, processing of 
aggrecan and oligomeric protein 

Enamel biomineralization 

MMP-21 1 Gelatinolytic Embryogenesis, invasive carcinomas, oral, esophageal and colorectal cancers, 
Merkel cell carcinoma, pancreatic cancer 

MMP-22 1 N.d. Tumor suppression 
MMP-23 1 N.d. Reproduction and breast cancer 
MMP-27 11 N.d. Endometriotic lesions, menstruation, breast cancer 
MMP-28 17 N.d. Tissue homeostasis, wound healing, repair, embryo implantation, cardiac 

remodeling, myocardial infarction, colon cancer, osteoarthritis, rheumatoid 
arthritis 
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Except for HA, all GAGs attach covalently to 
protein cores in proteoglycans (PGs), forming 
polymerized disaccharide chains, whereas HA is a 
free oligosaccharide binding noncovalently to PGs. 
HA is synthesized at the plasma membrane by 
hyaluronan synthases (HASes), while other GAGs 
undergo biosynthesis in the Golgi apparatus, where 
they attach to core proteins and undergo structural 
modifications.  
• Chondroitin sulfate is a common component of 

the ECM and cell surfaces in animals. CS chains 
attach to core protein, forming proteoglycans 
involved in diverse biological processes through 
interactions with growth factors, morphogens, 
cytokines, and adhesion molecules [432]. Despite 
its simple disaccharide structure, CS undergoes 
extensive modifications, including sulfation and 
epimerization, leading to structural diversity 
[433]. CS and DS often exist as hybrid chains, 
influencing cellular functions through specific 
binding sites [434].  Structural studies have 
revealed CS-DS interactions with bioactive 
proteins, yet detailed saccharide sequences 
remain elusive [435].   

• Dermatan sulfate, also known as chondroitin 
sulfate B, is a linear polysaccharide composed of 
disaccharide units containing GalNAc and GlcA 
or IdoA [436]. The presence of IdoA 
differentiates DS from other chondroitin sulfate 
and contributes to its unique protein-binding 
properties [437]. DS structure varies due to 
differences in chai length, sulfation patterns, and 
core proteins, influencing its biological 
interactions. It has a variety of functions in the 
ECM, cell function, and wound healing [438]. 
Unlike heparin and heparan sulfate, DS has 
distinct expression patterns and enzymatic 
modifications [439].  

• Heparin is the oldest and most widely used 
anticoagulant, discovered in 1926, clinically 
approved since 1935 [440]. It is derived from 
animal tissues, primarily pig intestinal and 
bovine lung, and consists of a highly sulfated 
GAG backbone [441].  HP exerts its 
anticoagulant effect by binding to antithrombin 
III (AT), enhancing its inhibition of thrombin and 
other coagulation proteases [442]. Beyond 
anticoagulation, HP interacts with various 
proteins, leading to additional pharmacological 
effects, including anti-viral, anti-tumor, 
anti-inflammatory, and anti-angiogenic 
properties [443]. Recent research has explored its 
non-anticoagulant applications in infectious 
diseases [444], cancer [445], inflammatory 

conditions [446], Alzheimer´s disease [447], and 
diabetic nephropathy [448].  

• Heparan sulfate (HS) is a widely distributed 
GAG found in the ECM and on cell surfaces, 
where it regulates tissue organization, cell 
signaling, and lipid metabolism [449]. 
Structurally, HS is less sulfated than heparin and 
undergoes enzymatic modifications such as 
epimerization and sulfation in the Golgi, 
affecting its binding interactions with growth 
factors, cytokines, and ECM molecules [450]. Its 
synthesis depends on UDP-sugar availability 
and is regulated by nucleotide-sugar 
transporters [451]. HS degradation, mainly by 
heparanases, modifies ligand recognition and 
signaling, with dysregulation linked to cancer 
progression [452]. HS proteoglycans (HSPGs), 
such as Syndecans and glypicans, have a role in 
cellular communication and structural integrity 
[453].   

• Hyaluronan/ Hyaluronic Acid is a non-sulfated 
GAG distributed in connective and epithelial 
tissues [454]. It is a key component of the ECM, 
contributing to cell proliferation, migration, and 
tissue hydration [455]. HA consists of repeating 
disaccharide units of D-glucuronic acid and 
N-acetylglucosamine linked by β-1,4 and β-1,3 
glycosidic bonds [456]. Its molecular weight 
ranges from 10 to 1000 kDa, influencing its 
biological functions. HA interacts with various 
receptors, including CD44, RHAMM, LYVE-1, 
and aggrecan, in cellular signaling, wound 
healing, and inflammation [457]. High molecular 
weight HA supports tissue integrity and 
hydration, while lower molecular weight HA is 
associated with inflammatory responses and scar 
formation [458]. It is used for skin health, acting 
as a lubricant in connective tissues and aiding in 
tissue repair. HA degradation is influenced by 
UV exposure and inflammatory signals via 
toll-like receptors (TLR2-TLR4) [458].  

• Keratan sulfate (KS) is a mucoid material 
containing galactose, glucose, acetyl, and sulfate 
groups [459]. Later studies refined its 
classification, establishing its structural 
properties and protein interactions [460]. KS 
exists in three forms: KS-I in the cornea, KS-II in 
cartilage, and KS-III in the brain, each differing 
in linkage types and sulfation patterns [461–463]. 
It has been found to interact with regulatory 
proteins, including growth factors and 
nerve-related molecules [464] 
All molecules are summarized and represented 

in Figures 2 and 3. 
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Figure 2. The molecules that interact in the extracellular matrix (ECM). A. Molecules in the intersection of the membrane and the ECM. B. Molecules that conform to the ECM. 
C. Molecules that are in the space between two fibroblasts.  

 
Table 5. Overview of the biological functions of ECM 

Function Key ECM 
components 

Mechanism Biological impact 

Structural 
support 

Collagens I, III, 
elastin 

Tensile strength, 
elasticity 

Tissue architecture 

Cell anchorage Fibronectin, 
laminins 

Integrin-mediated 
adhesion 

Cell polarity, survival 

Barrier 
function 

Basement 
membrane, 
proteoglycans 

Restriction of 
molecular diffusion 

Compartmentalization 

Reservoir of 
growth factors 

Perlecan, decorin Binding and 
controlled release 

Morphogenesis, repair 

Signal 
transduction 

All major ECM 
ligands 

Integrin and receptor 
activation 

Proliferation, survival 

Migration 
scaffold 

Fibronectin, 
collagen I 

Topography-guided 
movement 

Development, 
immunity 

Pathological 
modulation 

Stiff collagen 
matrix, 
matrikines 

Remodeling via 
MMPs, ADAMs 

Fibrosis, cancer 

 

Biological functions of the extracellular 
matrix  

Far from being a passive scaffold, the 
extracellular matrix (ECM) constitutes a dynamic and 
interactive interface between cells and their 
microenvironment. It continuously integrates and 
responds to mechanical forces and biochemical 
signals, thus regulating essential cellular processes, 
maintaining tissue organization, and influencing 
pathological phenomena such as fibrosis, chronic 
inflammation, and tumor progression (Table 5). Thus, 
the ECM is essential not only for structural integrity 

but also for signal transduction, homeostasis, and 
disease modulation. 

Structural support and mechanical integrity 
The ECM provides essential mechanical support 

to tissues by conferring tensile strength, elasticity, and 
structural resilience. This is especially important in 
load-bearing tissues such as skin, tendons, cartilage, 
and blood vessels, where fibrillar collagens (especially 
types I and III) and elastin are primarily responsible 
for biomechanical properties [465,466]. 

Beyond mechanical reinforcement, the ECM 
functions as a physical scaffold that supports a wide 
range of cell types, including epithelial, muscle, and 
bone cells, anchoring them within their native tissue 
compartments [467]. This anchoring occurs primarily 
through cell surface integrins, which bind to ECM 
ligands such as fibronectin, laminins, and collagens 
[468]. Once bound, integrins form focal adhesions, 
multiprotein complexes that link the ECM to the actin 
cytoskeleton and serve as a hub for 
mechanotransduction and signal transduction 
pathways [469,470]. 

In addition, the ECM plays a critical role in 
maintaining epithelial polarity, orienting tissue 
patterning, and preserving the structural integrity of 
specialized compartments such as basement 
membranes [471]. By defining the spatial organization 
of cells within tissues, the ECM contributes to 
maintaining organ function and integrity. 
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Figure 1. Schematic representation of extracellular matrix (ECM) components and their classification. The diagram illustrates the hierarchical organization of ECM molecules, 
including cell surface proteoglycans (syndecan, betaglycan, glypican), and pericellular small leucine-rich proteoglycans (SLRPs, Classes I-V). Core proteins and glycosaminoglycan 
(GAG) chains are indicated, with color-coded domains highlighting structural and functional motifs such as protease-sensitive regions, disulfide bonds, and glycosylation sites. 
Glycosaminoglycans, including chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, and heparin, are shown separately, with corresponding symbols for sugar 
residues. Multi-adhesive glycoproteins (fibronectin, fibrinogen, fibulin, laminin, osteopontin, nidogen) and collagens (Type I and Type IV) are depicted with their structural 
organization. This comprehensive schematic provides a reference framework for ECM composition, molecule interactions, and functional domains.  



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

6833 

Biochemical barrier and 
compartmentalization  

The ECM also functions as a selective 
biochemical barrier, regulating the diffusion and local 
concentration of signaling molecules, nutrients and 
metabolites [472]. This control is essential for the 
establishment and maintenance of tissue 
compartments, as well as for the orchestration of 
biochemical gradients that guide morphogenesis, 
immune responses and tissue repair. 

ECM components such as proteoglycans, with 
their high-affinity binding sites for soluble factors, 
sequester growth factors and cytokines-including 
TGF-β, FGF, VEGF, and EGF-and release them in a 
controlled, spatiotemporal manner following matrix 
remodeling or mechanical stress [473]. This regulation 
adjusts the local availability of bioactive molecules 
and modulates processes such as cell migration, 
proliferation, and angiogenesis. 

In pathological contexts such as chronic 
inflammation or cancer, changes in ECM porosity and 
composition may facilitate or hinder immune cell 
infiltration and molecular diffusion, thus modulating 
local immune response and disease progression [474]. 

Regulation of cell metabolism, differentiation, 
and proliferation 

The ECM exerts a profound influence on cell 
behavior through biochemical signals and 
biomechanical properties (Table 6). The coupling of 
integrins and other ECM receptors activates 
intracellular signaling cascades - most notably the 
PI3K/AKT, MAPK and FAK pathways - that govern 
cell proliferation, metabolism, differentiation, and 
survival [475,476].  

A critical phenomenon linked to ECM 
interactions is anoikis, a form of apoptosis triggered 
by the loss of cell-matrix adhesion [477]. This 
mechanism serves as a safeguard against inadequate 
cell survival and anchorage-independent growth, 
especially relevant in the context of epithelial 
homeostasis and tumor suppression [478,479]. 

In addition, ECM stiffness and topography can 
instruct lineage specification and modulate stem cell 
fate through mechanotransduction [480]. Cells sense 
changes in the mechanical properties of the ECM and 
transform them into nuclear signals through 
pathways such as YAP/TAZ, which ultimately 
influence gene expression programs [481]. 

The ECM also acts as a dynamic reservoir of 
soluble growth factors and morphogens, including 
members of the WNT, EGF, and TGF-β families, 
which are stored in latent forms and activated locally 
upon proteolytic cleavage or mechanical deformation 

of the matrix [482,483]. This spatial and temporal 
control of signal availability is essential during 
development, wound healing, and tissue 
regeneration. 

During embryogenesis, ECM composition 
provides positional information and guidance signals 
that regulate morphogenetic movements, cell fate 
decisions, and differentiation trajectories [484,485]. 
These effects are mediated by coordinated 
interactions between ECM molecules and specific cell 
surface receptors, reinforcing the role of the ECM as a 
critical modulator of developmental biology [486]. 

The barrier function of the skin depends on the 
structural integrity of its cellular components and 
their rapid restoration after injury. Skin wound 
healing in adult mammalian skin is a highly 
coordinated multiphasic process involving 
hemostasis, inflammation, re-epithelialization, 
granulation tissue formation, neovascularization, and 
tissue remodeling [487,488]. Under optimal 
conditions, re-epithelialization begins within hours 
and continues for several days as the basement 
membrane is restructured, and the epidermal surface 
is restored [489]. This regenerative process is 
regulated by a complex network of signaling 
pathways involving growth factors, cytokines, matrix 
metalloproteinases, cell receptors, and ECM 
components [490]. 

 

Table 6. ECM-regulated signaling pathway and cellular outcomes 

ECM interaction Receptor/Pathway Downstream 
effect 

Context 

Integrin-collagen I FAK/PI3K/MAPK Cell 
proliferation 

Tumor growth 

Lamini-integrin α6β4 YAP/TAZ Lineage 
commitment 

Strem cell fate 

Fibronectin-integrin 
α5β1 

MAPK, Rac1 Cell migration Wound healing 

Detachment from ECM Loss of integrin 
signaling 

Anoikis Epithelial 
turnover 

Proteoglycan-TGF-β SMADs Fibroblast 
activation 

Fibrosis  

Heparan sulfate- 
FGF/VEGF 

RTKs Angiogenesis Development, 
cancer 

 
 

The ECM as a platform for cell migration 
Cell migration is highly dependent on the ECM, 

which serves as both a structural substrate and a 
source of directional signals. During processes such as 
embryogenesis, tissue repair, immune cell trafficking, 
and cancer dissemination, cells traverse ECM 
networks through coordinated cycles of adhesion, 
traction, and detachment. 

Cell-ECM interactions during migration are 
mediated by integrins, proteoglycans (e.g., syndecans, 
perlecan), and glycoproteins (e.g., fibronectin, 
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laminin), which together regulate adhesion dynamics 
and cytoskeleton organization [491]. Cells respond to 
ECM properties, such as stiffness, density, and 
orientation (collectively termed ECM topography), by 
modulating their migration speed, directionality, and 
mode of locomotion (e.g., mesenchymal versus 
amoeboid migration) [492–494].  

ECM remodeling is an integral part of cell 
migration. MMPs, ADAM family proteases, and other 
matrix-degrading enzymes cleave ECM components 
to create migration pathways and release bioactive 
fragments [495–499]. These degradation products, 
termed matrikines, can further modulate cell behavior 
by acting as chemotactic or angiogenic signals. 

ECM remodeling in fibrosis, chronic 
inflammation, and tumor progression  

ECM remodeling is a tightly regulated process 
essential for maintaining tissue homeostasis, 
especially in response to physiological demands such 
as growth, wound healing, and regeneration. 
However, when dysregulated, it contributes to the 
pathogenesis of various chronic diseases (Table 7).  

In fibrotic disorders, there is an excessive and 
often irreversible accumulation of ECM components, 
particularly fibrillar collagens, resulting in increased 
matrix stiffness, loss of tissue elasticity, and distortion 
of architecture [500–502]. These changes impair organ 
function and are usually driven by activated 
fibroblasts and myofibroblasts, which may originate 
from resident mesenchymal cells, 
epithelial-mesenchymal transition (EMT) cells, or 
bone marrow-derived precursors [503,504]. These 
cells produce large amounts of ECM proteins and 
secrete profibrotic factors, especially TGF-β, 
establishing a feed-forward loop that perpetuates 
matrix deposition. 

Chronic inflammation further amplifies ECM 
dysregulation. Persistently recruited immune cells 
release cytokines and matrix-modifying enzymes, 
such as MMPs, that degrade ECM components and 
alter the biochemical and mechanical landscape of 
tissues     [505–508]. The resulting disorganization of 
the ECM can promote aberrant healing responses, 
immune evasion, and, over time, increase 
susceptibility to malignant transformation. 

In cancer, the ECM undergoes extensive 
biochemical and biomechanical remodeling. 
Tumor-associated ECM is often denser, stiffer, and 
biochemically altered, favoring integrin clustering 
and activation of downstream oncogenic pathways 
such as FAK and YAP/TAZ [509–511]. These 
pathways enhance cell proliferation, survival, 

invasion, and resistance to apoptosis. In addition, 
physical properties of the tumor ECM, such as altered 
porosity and fiber alignment, may hinder immune cell 
infiltration and contribute to an immunosuppressive 
microenvironment. 

The spatial heterogeneity and molecular 
composition of tumor ECM define distinct niches that 
may modulate therapeutic responses and metastatic 
potential [512]. Continuous remodeling through 
synthesis, degradation, chemical modification, and 
reassembly of ECM components is a hallmark of 
cancer progression and therapeutic resistance [513–
515]. Importantly, ECM protein fragments generated 
during remodeling (e.g., endostatin, tumstatin) can act 
as bioactive mediators that influence angiogenesis, 
inflammation, and tumor dormancy, further 
highlighting that the ECM is both a target and effector 
in pathological remodeling [516,517].   

 

Table 7. ECM changes in physiological vs. Pathological 
remodeling  

Process ECM composition Enzymatic 
activity 

Functional 
outcome 

Homeostasis Balanced ECM 
synthesis/degradation 

Controlled MMP Tissue integrity 

Wound 
healing 

Transient increase in 
fibronectin, collagen III 

MMPs 
upregulated 

Regeneration 

Fibrosis Excess collagen I, reduced 
elastin 

Persistent 
fibroblast 
activation 

Stiffness, organ 
failure 

Chronic 
inflammation 

Fragmented ECM, 
increased hyaluronan 

MMP 
overexpression 

Tissue 
disorganization 

Cancer Dense, aligned ECM, rich 
in fibronectin 

MMPs, ADAMs 
active 

Invasion, 
immune evasion 

 
 

Hidden connections: how ecm interacts 
with aging, calcification, and cancer 

While individual roles of aging, calcification, and 
cancer have been extensively described, their 
convergence through ECM dysregulation remains less 
clearly represented. Strengthening these correlations 
is essential to understanding how common alterations 
in the matrix can simultaneously drive tissue 
degeneration, mineral deposition, and tumor 
progression.   

To address this, it is summarized in the 
following table the principal ECM changes and shared 
mechanisms across these conditions (Table 8). In 
parallel, a schematic model is provided to visualize 
ECM dysregulation as the central hub linking these 
dysfunctions, offering a clearer perspective on their 
interconnected nature (Figure 4).  
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Table 8. The principal ECM changes and shared mechanisms across aging, calcification, and cancer 

Process Key ECM alterations Shared mechanisms  Pathological outcomes 
Aging Collagen fragmentation, oxydation, glycation, AGEs 

accumulation 
Increased ECM stiffness via LOX/LOXL 
crosslinking  
Decreased elastin and proteoglycans 
Accumulation of SASP 

Chronic inflammation (inflammaging) ECM 
stiffening: altered mechanotransduction 
(YAP/TAZ) 
SASP-driven MMP activation and ECM 
degradation 
 

Fibrosis 
Vascular stiffening and vascular 
calcification 
Increased susceptibility to cancer 
initiation 

Calcification Deposition pf calcium-phosphate crystals in ECM  
Altered collagen/elastin scaffolds favoring 
mineralization 
ECM remodeling via MMPs, ADMTs, and EVs 

Senescence and inflammation as triggers of 
mineralization 
SASP/EVs promoting osteogenic 
transformation (RUNX2, Sox9, Klf10) 
ECM stiffness reinforcing mineralization 

Vascular calcification: CVD  
Osteoarthritis 
Calcific aortic valve disease 
Tumor microcalcifications 

Cancer Excessive ECM deposition (collagen I, fibronectin) 
Crosslinking by LOX/LOXL enzymes: stiffness 
MMP/ADAMTS-driven ECM degradation releasing 
bioactive fragments 
EV accumulation in ECM 

Aging-associated SASP fueling 
tumor-promoting inflammation 
Calcification (microcalcifications in tumor) as 
diagnostic/biological marker 
Shared role of LOX enzymes in fibrosis, 
calcification, and tumor progression 

Tuor growth and metastasis  
Therapy resistance 
Chronic inflammation and immune 
invasion 

 

  
Figure 4. Schematic representation of the interconnections between aging, calcification, and cancer through ECM dysregulation. The diagram illustrates how ECM alterations act 
as a central hub linking these three processes. Although aging, pathological calcification, and cancer present distinct pathological features, they share common mechanisms such 
as ECM stiffening driven by LOX/LOXL crosslinking, chronic inflammation and SASP activity, as well as EVs and protease-mediated remodelling. By placing ECM dysregulation at 
the cancer, the figure highlights the complex and often difficult-to-visualize relationships that underlie tissue dysfunction and disease progression.  

 
Interaction of ECM and aging 

The extracellular matrix (ECM) is a dynamic and 
versatile network that serves as a key regulator of 
fundamental cellular functions [518]. It guides cells on 
how to organize their structure, including adhesion 
and polarity; when to divide (proliferation) migrate, 
or undergo programmed cell death (apoptosis); where 
to release specific molecules (secretion); how to 
differentiate into specialized cell types; and how to 
interpret and respond to external signals [519]. 
Dysfunction of the ECM is linked to various 
age-related diseases and disorders, making it a 
valuable target for therapeutic approaches aimed at 
treating conditions such as fibrosis and cancer [520].  

Aging is a widespread process marked by the 
progressive accumulation of biological changes that 

gradually impair an organism´s functionality over 
time [521]. In humans, aging is associated with a 
steady decline in both cognitive and physical abilities, 
alongside an increased susceptibility to different 
diseases, including cancer, diabetes, cardiovascular 
disorders, musculoskeletal conditions, and 
neurodegenerative illnesses [522]. 

These age-related impairments have a bad 
impact on quality of life, leading to disability, 
increased morbidity, and a heightened risk of 
mortality. Aging places a significant burden on 
individuals, their families, and society [523].  The 
interaction between the genetic development of an 
individual, environmental influences, and the 
stochastic nature of damage accumulation determines 
susceptibility to age-related diseases [524]. Several 
biological processes have been identified as hallmarks 
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of aging, including genomic instability, dysregulated 
nutrient sensing, mitochondrial dysfunction, stem cell 
depletion, disrupted cellular communication, and 
excessive cellular senescence [525].  

During aging, the structural integrity of the 
extracellular matrix deteriorates due to the 
accumulation of fragmented collagens, oxidation, 
glycation, and aggregated proteins [526]. These 
changes impair ECM dynamics, leading to tissue 
fibrosis. The stiffness of the ECM also increases with 
age because of the gradual formation of enzymatic 
and nonenzymatic intramolecular and intermolecular 
covalent bonds between slowly turning over 
molecules, such as fibrillar collagens and elastin [527]. 
Interestingly, inhibiting the cross-linking of LOXL2 
and LOXL3 has been shown to restore normal 
collagen fibrillogenesis, reducing tissue stiffness [528]. 
This suggests that targeting collagen cross-linking can 
help maintain tissue mechanohomeostasis, limiting 
the self-perpetuating effects of ECM stiffness on 
fibrosis and aging.  

Also, protein modifications often involve the 
cleavage of peptide bonds, a process predominantly 
driven by enzymatic activity [529]. While peptide 
bond cleavage and protein degradation are 
components of normal protein homeostasis, this 
balance can be disrupted in aging tissues, where 
degradation may outpace synthesis [530]. 
Furthermore, partially cleaved proteins can persist 
within the ECM due to physiological or age-related 
crosslinking, leading to the accumulation of 
dysfunctional proteins. 

Some studies have hypothesized that aging 
results from the accumulation of cellular and 
molecular damage caused by the failure of the repair 
mechanism. This damage is thought to occur 
randomly, which could explain the variability in 
aging phenotypes observed, even among genetically 
identical individuals  [531].  

Besides these factors that accelerate aging in 
ECM, the accumulation of senescent fibroblasts with 
age (a more detailed explanation is provided in the 
following sections) is ongoing, about whether 
SASP-driven effects on tumor development are 
directly attributable to aging [532]. Interestingly, 
long-lived species such as lobsters and rainbow trout 
retain telomerase activity, allowing continuous 
cellular proliferation, which may contribute to slower 
senescent cell accumulation [533,534].  However, 
direct evidence supporting this hypothesis remains 
limited.  

Senescence is not a uniform process, and 
different triggers, including oncogenic activation, 
replication stress, or environmental factors, can alter 
the composition of SASP factors [535]. Thus, not all 

forms of senescence necessarily reflect aging-related 
decline. In aged tissues, a marked reduction in 
fibroblast density and proliferative capacity has been 
observed, yet this loss is highly localized rather than 
uniformly distributed [536]. Studies in aging mouse 
skin suggest that fibroblasts do not compensate for 
this loss by proliferating but instead extend their 
membrane protrusions to maintain tissue architecture 
[537].   

Beyond numerical decline, aged fibroblast 
undergoes significant phenotypic change. Recent 
findings indicate that fibroblasts in aged skin exhibit 
genomic reprogramming, shifting from 
ECM-producing cells toward a more adipogenic-like 
phenotype [538]. Notably, this transformation is 
metabolically regulated, caloric restriction suppresses 
this age-related shift, whereas a high-fat diet 
accelerates it.  

Aging is a significant factor that leads to a 
decline in human health, contributing to the 
development of various illnesses, including tissue 
calcification and tumors. This section explores the 
different pathways through which aging impacts the 
activity of the ECM. All these concepts are observed in 
Figure 5. 

Vascular aging 

The fragmentation of elastic fibers is a hallmark 
of aging in tissues like skin and blood vessels. 
Vascular aging is characterized by both structural and 
functional changes in the arteries, often accompanied 
by increased thickening of the intimal and medial 
layers of the arterial wall [539]. Alterations in the 
composition and organization of ECM components 
primarily drive these changes. Among the various 
molecular factors that accumulate with age, advanced 
lipid peroxidation end products (ALEs) are 
particularly notable [540]. These byproducts are 
closely linked to oxidative stress, with a role in 
diseases such as atherosclerosis. Aldehydes, produced 
through the peroxidation of polyunsaturated fatty 
acids (PUFAs), including 4-hydroxyphenyl (4-HNE), 
malondialdehyde (MDA) [541], and acrolein [542], 
can form adducts with cellular proteins. This leads to 
progressive protein dysfunction, contributing to the 
complex pathophysiology of vascular aging [543]. 
Despite the established role of aldehydes in protein 
modification, their specific impact on ECM 
components remains unclear [544]. In one study using 
immunohistology and confocal immunofluorescence 
techniques, the research showed that 4-HNE-histidine 
adducts accumulate in an age-dependent manner 
across all layers of the human aorta, including the 
intima, media, and adventitia [545]. These adducts are 
predominantly localized in vascular smooth muscle 
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cells (VSMC). Interestingly, while elastin fibers in 
aged vessels exhibit significant structural alterations, 
the study demonstrated that elastin itself is minimally 
affected or only weakly modified by 4-HNE. For 
instance, young human aortas exhibit thick, organized 
elastic fibers arranged in parallel [545]. In contrast, 
older aortas show thinner, fragmented, and 
disorganized fibers interspersed with an increased 
presence of other ECM components. These findings 
establish a complex union between lipid peroxidation 
and ECM components, suggesting that while 
aldehyde adducts have a role in vascular wall 
remodeling and the progression of atherosclerosis, 
their direct impact on elastin integrity appears limited 
[545].  

While Sox9, a transcription factor, is known to 
influence VSMC differentiation into osteo/ 
chondrogenic lineages, its connection to aging and 
calcification remains unexplored [546]. Recent 
research examined human aortic samples and 

senescent VSCMs to assess Sox9 expression and its 
impact on ECM properties. Sox9 was not directly 
linked to vascular calcification but was strongly 
correlated with cellular senescence markers like p16 
[547].  Mechanosensitive responses revealed increased 
Sox9 expression and nuclear translocation in aged 
cells and stiff ECM environments. Notably, Sox9 
altered ECM stiffness and organization by 
modulating collagen expression and reducing VSMC 
contractility, leading to an ECM profile characteristic 
of senescent cells [547]. An important discovery was 
the role of procollagen-lysine, 2-oxoglutarate 
5-dioxygenase 3 (LH3), as a Sox9 target, mediating 
ECM stiffness through its secretion in extracellular 
vesicles. Experimental manipulation demonstrated 
that Sox9-induced ECM stiffening promotes VSMC 
senescence, while ECM synthesized from 
Sox9-depleted cells rescued senescence and restored 
proliferation [547].  

 

 
Figure 5. A. Representation of an extracellular matrix (ECM) before undergoing degradation due to factors associated with aging and senescence. The ECM contains normal 
levels of collagen and elastin and factors characteristic of the senescence-associated secretory phenotype (SASP). B. Representation of an aged and senescent ECM, showing a 
reduction and fragmentation of elastin fibers, a lower amount of collagen fibers, the presence of senescence-associated fibroblasts, and the dispersion of molecules synthesized 
and released into the extracellular matrix by the senescence-associated secretory phenotype (SASP). These molecules promote the senescence of nearby cells near the primary 
senescent cells. 
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Similarly, in the dermis, long elastic fibers 
characteristic of younger tissue becomes shorter and 
more fragmented with age [548]. While mechanical 
fatigue has been proposed as a direct cause of elastic 
fiber damage [549], studies on porcine aortic elastic 
fibers subjected to repetitive cyclic loading in vitro 
have demonstrated fatigue-related damage [550]. 
However, mechanical fatigue alone does not account 
for all observed changes. Notably, increased activity 
of MMPs with elastase activity in the aortic walls of 
both rodents and humans suggests a significant role 
for enzymatic degradation in elastin fragmentation 
[551].  

Alterations of collagen by the effects of aging 

In tendons, the ECM provides biochemical 
signals for tissue growth, repair, and healing, and a 
physical scaffold to support the biochemical 
properties of the tendons [552]. However, aging 
induces significant changes in tendon ECM 
composition and organization, impacting its function 
and structure [553]. Collagen accounts for 60-85% of 
the dry weight in tendons and is central to their 
tensile strength and viscoelasticity [554]. Collagen 
type I dominates, with smaller contributions from 
type III and V, which regulate fibrillogenesis and 
alignment [555].  With age, collagen biosynthesis 
declines due to reduced activity of collagen-secreting 
tenocytes and tendon stem/progenitor cells (TSPCs) 
[556]. At the same time, remodeling enzymes, 
oxidative stress, and advanced glycation end products 
(AGEs) contribute to collagen fragmentation, 
disorganization, and cross-linking [557]. These 
processes lead to diminished fibril size, altered fibril 
alignment, and decreased ECM functionality, 
ultimately compromising the mechanical 
performance of the tendons [558]. Enzymes such as 
MMPs and their inhibitors (TIMPs) have a pivotal role 
in ECM remodeling. Aging tends to disrupt the 
balance between MMP and TIMP activity, favoring 
excessive collagen degradation [559]. For example, 
increased activity of collagenases (e.g., MMP-1, 
MMP-13) and gelatinases (MMP-2, MMP-9), 
combined with reduced TIMP levels, accelerates ECM 
turnover but also results in disorganized collagen and 
impaired tissue repair [560,561]. Chronic upregulation 
of MMP activity has also been linked to tendon 
degeneration and pathologies [562]. Studies on equine 
flexor tendons have revealed elevated levels of 
neo-epitopes (markers produced by the cleavage of 
collagen´s triple helix by MMP-1 and MMP-13 in 
older horses) [563]. Also, the expression of MMP-10 at 
the RNA level and MMP-3 at the protein level 
increased in aging tendon tissue [564]. 

AGE formation, which occurs through the 

non-enzymatic binding of sugars to collagen, further 
exacerbates the decline in ECM integrity during aging 
[565]. AGEs increase collagen stiffness, disrupt 
collagen-proteoglycan interactions, and impair cell 
adhesion and migration [566].  Hyperglycemia and 
oxidative stress from senescent cells accelerate AGE 
accumulation, leading to a more rigid and less 
functional ECM. Additionally, the long half-life of 
tendon collagen allows AGE-related cross-linking to 
accumulate over time, further hindering ECM 
homeostasis and tendon regeneration [567]. Overall, 
aging leads to profound alterations in tendon ECM 
composition and structure, reducing its biochemical 
properties and repair capacity.  

The relationship between aging and tendon 
biomechanics has been extensively studied in human 
and animal models. Still, findings are often 
inconsistent due to differences in study design, 
subject age, tendon type, and conditions [568]. 

One of the defining features of tendon aging is 
the gradual and often irreversible decline in its 
mechanical properties [569]. This deterioration is 
largely driven by changes in tendon cellularity, 
collagen turnover, fibril diameter and alignment, and 
collagen cross-linking, particularly glycation-induced 
cross-linking. Key biochemical parameters used to 
evaluate tendons include tensile strength, modulus, 
stiffness, and viscoelasticity [570]. These metrics, 
while interrelated, reflect distinct properties: stiffness 
measures resistance to deformation under force, while 
strength quantifies the maximum stress a tendon can 
endure before permanent damage or failure [571], 
determining whether a tendon is both string and 
elastic or strong yet rigid. Proteomic analyses have 
uncovered age-related neo-peptides derived from 
collagens and glycoproteins in older equine tendons, 
absent in younger tissue, suggesting shifts in ECM 
breakdown patterns with age [572]. A key focus 
moving forward is identifying and driving the 
production of these neo-peptides, as they represent a 
therapeutic target for minimizing ECM fragmentation 
in aging tissues. Generally, various studies associate 
aging with unchanged or reduced tensile modulus, 
stiffness, and strength. For instance, some research 
has shown minimal differences in maximum strength 
in aged human tendons or mouse models [573]. In 
contrast, others report reduced stiffness and modulus 
in the Achilles tendon of older adults [573]. However, 
contradictory evidence exists; one study noted stiffer 
Achilles tendons in elderly participants compared to 
younger individuals.  

Alterations in the production of cartilage caused by aging 

The ECM of cartilage has been studied 
extensively due to its connection to osteoarthritis, a 
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degenerative condition associated with aging [574].  
Proteoglycans, such as aggrecan, gradually decline in 
cartilage and are subject to enzymatic cleavage over 
time  [575]. Aggrecan is broken down between its G1 
and G2 globular domains by enzymes like MMP-13 
and ADAMTS5, with these fragments accumulating 
in older tissue [576]. The G3 domain of aggrecan, 
located at its C-terminal end, also diminishes with age 
[577]. Similarly, type II collagen, another key 
structural component of cartilage, undergoes 
denaturation and fragmentation in aging cartilage, 
undergoes denaturation and fragmentation in aging 
cartilage [578].  

These observations illustrate the complex 
processes of ECM degradation across various tissues 
as they age, emphasizing the importance of further 
research to uncover the enzymes and pathways 
responsible. Such insights could enable the 
development of targeted treatments to maintain ECM 
integrity and reduce age-related tissue degradation 
[579].  

The role of senescent cells in ECM production  

Cellular senescence is a hallmark of aging, 
characterized by growth arrest and profound changes 
in gene expression, particularly through the 
senescence-associated secretory phenotype (SASP) 
[580]. While it remains difficult to determine whether 
senescence is driven primarily by aging or external 
factors, a defining characteristic is the progressive 
accumulation of senescent cells in aged tissues and 
stromal microenvironments [581].    

It serves as a double-edged sword in 
physiological processes, providing both protective 
and detrimental effects depending on its duration and 
regulation [582]. In its beneficial role, senescence 
contributes to tissue repair, tumor suppression, and 
the resolution of fibrosis, ensuring organismal 
integrity and even playing a role in embryonic 
development [583]. Under normal conditions, the 
immune system efficiently clears senescent cells, 
preventing their excessive accumulation and 
maintaining tissue homeostasis [584].   

However, as aging progresses, the immense 
system becomes less effective at removing senescent 
cells, leading to their prolonged persistence and 
accumulation [585]. This contributes to chronic 
inflammation, impaired wound healing, and 
increased susceptibility to tumor progression, turning 
what was once a protective mechanism into a driver 
of aging-related diseases [586]. This phenomenon, 
known as antagonistic pleiotropy, illustrates how 
biological mechanisms that are beneficial in early life 
can become detrimental with age [587].    

The mechanisms behind this accumulation 

remain debated. One hypothesis suggests that 
age-related immune cell decline reduces the clearance 
of senescent cells, leading to their persistence [588].  
However, some studies challenge this notion, arguing 
that the evidence supporting impaired immune 
surveillance as the primary cause remains 
inconclusive [589].  Regardless of the mechanics, 
senescent cells actively modify their environment by 
secreting proinflammatory cytokines, chemokines, 
growth factors, and matrix-degrading enzymes [590]. 
This secretory phenotype has dual effects: it can signal 
immune cells to clear damaged cells but also promote 
chronic inflammation, tumor progression, and ECM 
remodeling [591,592].  

Traditionally, DNA damage has been considered 
a major trigger for age-related senescence. However, 
emerging research suggests that epigenetic alterations 
and chromatin remodeling play equally significant 
roles [593]. For instance, histone deacetylase (HDAC) 
modulation in tumor-associated fibroblasts can 
induce SASP without direct DNA damage [593].  

These findings enhance the complex regulatory 
network governing senescence, emphasizing that 
genomic instability, epigenetic modifications, and 
immune dysfunction contribute to senescent cells' 
persistence [594].    

Notably, while increased ECM stiffness may 
contribute to the development of cellular senescence 
during aging and chronic fibrotic diseases, ECM 
derived from young human fibroblasts has been 
shown to restore a more youthful state in aged, 
senescent cells [595]. As ECM stiffness increases, the 
fibrotic process is further driven by excessive 
secretion of TGFβ, YAP-1, and its paralog WW 
domain-containing TAZ [596]. YAP and TAZ function 
as mechanotransducers, activating the expression of 
pro-fibrotic genes, such as transglutaminase-2 and 
lysyl oxidases [597].  

However, the relationship between aging and 
YAP/TAZ signaling is complex and tissue-specific 
[598]. For instance, genetic inactivation of YAP/TAZ 
in stromal cells accelerates aging, while maintaining 
YAP activity has been shown to rejuvenate aged cells 
and prevent age-related changes by mitigating 
inflammaging [598].  

Elastin, an important ECM protein (the most 
abundant in the lung), has an important role in the 
formation and structural integrity of alveoli in mice. 
As a key component of the alveolar architecture, 
elastin becomes severely dysregulated in chronic 
obstructive pulmonary disease (COPD), an 
age-related lung disorder characterized by 
progressive airflow limitation [599]. This pathology is 
closely linked to the accumulation of senescent cells 
and a diminished proliferative capacity of 
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mesenchymal precursor cells in the alveolar 
parenchyma. Together, these factors significantly 
impair ECM production, including elastin synthesis 
[599]. A prominent feature of COPD is emphysema, 
marked by the abnormal expansion of alveolar spaces 
and extensive remodeling of lung parenchyma. 
Evidence suggests that emphysema arises from 
reduced production and inadequate regulation of 
ECM components necessary for tissue repair and 
maintenance [600]. This decline in ECM remodeling 
disrupts the homeostasis of connective and epithelial 
tissues, leading to structural insufficiency [601]. 
Cellular senescence appears to be a central driver of 
these changes, primarily through its impact on 
mesenchymal cell function [602]. The resulting decline 
in ECM protein production, including elastin, 
exacerbates tissue dysfunction and the role of elastin 
in preserving normal lung mechanics [601]. These 
findings emphasize the destructive consequences of 
senescence-associated elastin dysregulation, 
providing valuable insights into the progression of 
COPD and its underlying mechanisms [603].  

The accumulation of senescent fibroblasts 
significantly contributes to skin aging [604]. These 
fibroblasts lose their cellular identity, exhibit an 
increased release of the senescence-associated 
secretory phenotype (SASP) (Figure 3), and disrupt 
the balance of ECM homeostasis [605,606]. This 
process triggers a cascade effect as senescence spreads 
between cells, perpetuating dermal aging [607]. The 
aged dermis displays prominent clinical 
characteristics, including decreased thickness, 
reduced resilience, and diminished mechanical 
strength, which results in a wrinkled and flabby 
appearance [608]. These changes are associated with 
the loss of ECM components during aging, driven by 
reduced synthesis and increased degradation of ECM 
in aged fibroblasts. SASP components, such as MMPs, 
which directly cleave collagen fibrils, significantly 
contribute to ECM degradation during aging [609]. 
Research has demonstrated that levels of MMPs, 
including MMP1, MMP2, and MMP9, are elevated in 
the aged dermis and fibroblasts derived from older 
individuals [610]. Overexpression of hMMP1 induces 
aging phenotypes in ex vivo 3D human skin organ 
culture and in vivo mouse models. Also, increased 
MMP levels are accompanied by reduced TIMPs in 
aged skin, leading to an imbalance in the 
MMPs/TIMPs ratio and progressive collagen 
fragmentation [611]. Overexpression of TMP-1 has 
been shown to protect ECM integrity and maintain 
elasticity under chronic UVB exposure, whereas 
neutralizing TIMP-1 produces the opposite effect 
[612].  

Furthermore, fibroblasts in aged skin exhibit 

reduced production of ECM, particularly the key 
collagen network components such as collagen types I 
and III [613]. This decline is attributed to reduced 
TGF-β signaling. Multiple studies enhance the 
importance of TGF-β in dermal aging. Physiologically, 
the aged dermis shows reduced ECM content [614]. 
TGF-β signaling promotes ECM gene expression 
while suppressing ECM degradation by 
downregulating MMPs and upregulating TIMPs 
[615]. Oxidative stress or UV irradiation can disrupt 
the TGF-β signaling pathway in fibroblasts, leading to 
decreased expression of downstream targets such as 
connective fibers growth factor (CTGF/CCN2) and 
type I collagen [616,617].  Knockdown of TβRII or 
Smad3 reduces collagen synthesis, while 
overexpression of TβRII restores UV-induced collagen 
loss by activating TGF-β  signaling [618]. Disrupted 
TGF-β signaling also alters CCN1 expression in 
dermal fibroblast mice, mimicking aged skin 
characterized by a wrinkled appearance and 
disrupted collagen network [618]. Reduced fibroblast 
size (a hallmark of dermal fibroblasts in aged skin) is 
associated with decreased TβRII expression and 
diminished ECM production in aged human skin 
[619]. Thus, a compromised TGF-β signaling pathway 
is closely linked to dermal aging [620].        

Interaction of ECM and calcification  
Calcification is the process by which calcium 

accumulates in tissue, leading to the deposition of 
calcium salts through the crystallization of phosphate 
ion (PO43-) and ionized calcium (Ca+2) [621]. While this 
mechanism is vital for the development and mutation 
of bones and teeth, pathological calcification can occur 
in nearly all soft tissues, often associated with aging 
and diseases [622]. In bone physiology, calcification is 
fundamental for skeletal growth and mechanical 
strength. This process involves precisely depositing 
calcium phosphate crystals within a protein matrix, 
gradually forming a rigid and durable skeletal 
framework [623]. The regulation of this process is 
orchestrated by a complex network of osteoblasts, 
osteoclasts, stem cells, and signaling molecules, 
ensuring the production of robust bone tissue. The 
composite structure of mammalian bones and teeth 
reflects a sophisticated combination of inorganic and 
organic components [624]. These tissues have 
approximately 70% inorganic minerals, 20% proteins, 
and 10% water by weight [625]. The inorganic crystals 
confer resistance to compressive forces and enhance 
tissue toughness by interacting with the protein 
matrix. Type I collagen, the primary in this matrix, 
provides tensile strength and is a scaffold for 
hydroxyapatite deposition, the main inorganic 
component [625].  
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Aging is the leading driver of pathological 
calcification, though this process is also frequently 
observed in tumors, blood vessels, and joints [626]. 
Pathological calcification can occur through various 
pathways, with differing levels of cellular regulation, 
particularly in non-skeletal tissues such as the 
vasculature and neoplasms [627]. Calcified deposits, 
composed of calcium phosphate crystals embedded 
within the extracellular matrix, can have detrimental 
effects on tissue function. These deposits contribute to 
mechanical stress and stiffness, impairing the 
flexibility and resilience of affected tissues [628]. 
Additionally, they are associated with cellular 
damage and inflammation, further exacerbating tissue 
dysfunction. Despite their adverse effects, calcified 
deposits are commonly utilized as markers for 
diagnosing and tracking disease progression [629].   

The formation of calcium phosphate crystals can 
occur through different pathological mechanisms, 
leading to distinct types of calcifications [630]. 
Dystrophic dysfunction arises in areas affected by 
trauma or necrosis despite normal plasma levels of 
calcium and phosphate [631]. This process can result 
from various factors, including mechanical injury, 
inflammation, injections, or parasitic infections, 
leading to localized calcium accumulation [632]. In 
contrast, metastatic calcification develops due to 
systemic disturbances in calcium and phosphate 
homeostasis [633]. Conditions such as hypercalcemia 
drive calcium deposition in previously healthy 
tissues, leading to widespread calcification in multiple 
organ systems [634].  

Also, iatrogenic calcification can occur as an 
unintended consequence of medical interventions 
[635]. Surgical procedures, radiation therapy, or the 
administration of calcium or phosphate-containing 
agents can trigger pathological calcium deposition 
[636]. Although abnormal calcification can affect 
almost any soft tissue in the body, certain areas are 
particularly susceptible, including blood vessels, 
heart valves, the brain, breasts, kidneys, gastric 
mucosa, lungs, and tendons  [637–640]. Among these, 
vascular calcification has been a primary focus of 
research due to its significant clinical implications.  

Vascular calcification refers to the pathological 
deposition of calcium salts within blood vessels, 
primarily affecting the intimal and medial layers as 
well as the aortic valves. Initial calcification is strongly 
associated with atherosclerosis, where calcium 
phosphate deposits form within the ECM rather than 
inside cells [641]. This process is commonly linked to 
atherosclerosis plaques, leading to vascular stiffening 
and increased cardiovascular risks. The mineral 
composition of vascular calcifications varies, with 
depositions consisting of apatite, whitlockite, or 

octacalcium phosphate, ranging in size from 
submicron particles to formations exceeding 0.5 mm 
[642]. As vascular calcification progresses, it disrupts 
ECM homeostasis, contributing to arterial stiffening 
and vessel rupture, both of which significantly impact 
cardiovascular tissue [643]. Figure 6 shows the main 
intervention of calcification and its interaction with 
ECM. 

Calcific aortic valve disease 

Calcific aortic valve disease (CAVD) is a 
progressive disorder that ranges from aortic valve 
(AoV) sclerosis to aortic stenosis (AS), characterized 
by extensive calcification and impaired leaflet 
function [644]. It is the most prevalent valvular heart 
disease in developed countries, particularly affecting 
aging populations, with a prevalence of up to 13% in 
individuals over 65 years old [645]. The development 
of CAVD is influenced by multiple risk factors, 
including hypertension, smoking, diabetes mellitus, 
hypercholesterolemia, and male sex. In addition to 
these well-established contributors, genetic and 
developmental factors have a significant role [646]. 
For instance, bicuspid aortic valve (BAV), a common 
congenital heart defect, has been linked to CAVD 
through dysregulation of RUNX2 expression, a key 
regulator of osteogenic differentiation [647].  

The progression of the disease follows a 
continuum, beginning with valve sclerosis, followed 
by chronic inflammation, and culminating in 
pathological calcification, which results in aortic 
stenosis [648]. This pathological process is 
orchestrated by a dynamic interplay of cellular 
components, including valve interstitial cells (VICs), 
vascular endothelial cells (VECs), and inflammatory 
cells, which collectively mediate ECM remodeling 
[648]. An abnormal ECM remodeling is a key 
hallmark of CAVD. In a healthy air valve, ECM 
integrity is maintained through complex signaling 
interactions between VICs and VECs, with additional 
contributions from circulating mesenchymal cells, 
innate immune cells, and extracellular vesicle release 
[649]. The ECM composition within the aortic valve 
varies across its internal layers, each serving distinct 
mechanical functions. The outflow layer, known as 
the fibrosa, is rich in type I and III collagen bundles, 
which provide the tensile strength necessary to 
withstand mechanical stress [650]. In contrast, the 
inflow layer to the ventricles contains an advanced 
concentration of radially oriented elastic fibers, which 
have an important role in ensuring proper valve 
closure at the end of the diastolic phase and in 
absorbing mechanical pressure fluctuations 
throughout the cardiac cycle [651]. Disruptions in this 
finely tuned ECM organization contribute to the 
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pathological progression of CAVD, leading to 
compromised valve function and calcification [652].  

This pathological calcification occurs through 
two primary mechanisms: dystrophic calcification, 
driven by passive hydroxyapatite deposition, and 
biomineralization (ossification), an active, cell- 
mediated process  [653]. Microscopic, calcified 
nodules frequently emerge near sites of endothelial 
damage, where aggregated cell debris and degraded 
ECM fibers serve as substrates for calcium and 
phosphate deposition [654]. Within these nodules, 
apoptotic cells further contribute to mineral 
accumulation [655,656]. Myofibroblasts also have a 
role due to their contractile properties increasing in 
response to stiffer ECM environments, promoting 
apoptosis. Meanwhile, oxidative stress has been 
linked to immune cell apoptosis within the inflamed 
aortic valve, although the molecular pathways 
driving ECM mineralization remain poorly 
understood [657].   

Emerging evidence suggests that extracellular 
vesicles (EVs) are involved in valve mineralization, 
with two key subtypes identified: mineralized 
spheroid microparticles and matrix vesicles (MVs) 
[658]. Mineralized spheroid microparticles (1-3 µm in 

size), first described in 2013, have been associated 
with microcalcifications characteristic of dystrophic 
calcification [659]. VIC cultures undergoing 
osteogenesis differentiation exhibit these 
microparticles on their surface, similar to observations 
in human calcified aortic valves. Although the precise 
mechanism of their secretion remains unclear, their 
presence is closely linked to VIC apoptosis and 
osteogenic transformation [658]. In parallel, MVs, 
which are enriched in MMPs, likely mediate ECM 
remodeling and mineralization [660].  Notably, these 
vesicles overexpress ectonucleotidases such as 
alkaline phosphatase (ALP), ectonucleotide 
pyrophosphatase/phosphodiesterase 1 (E-NPP1), and 
5´-nucleotidase (CD73), all of which form part of 
calcium-phosphate nucleation. VICs, macrophages, 
and VSMC have been shown to release MVs, further 
promoting biomineralization [661–664]. Studies 
suggest that mineralization begins within MVs, with 
Ca+2 and PO43- influx triggering hydroxyapatite 
formation upon their attachment to the ECM. 
However, alternative mechanisms propose that 
mineralization originates intracellularly before 
propagating to MVs and ECM fibers [665].  

 

 
Figure 6. A. Generic image of the muscle cell calcification process. B. Enlarged view of the general image. The left image shows the physiological conditions of the extracellular 
matrix (ECM) and its interaction with the cell. In contrast, the right image illustrates changes in ECM conditions, where calcification occurs due to ECM alterations. This process 
begins with the deposition of hydroxyapatite crystals mediated by extracellular vesicles. The accumulation of reactive oxygen species (ROS) promotes this mineralization. These 
pathological changes are exacerbated by ECM remodeling due to an increase in the presence of matrix metalloproteinases (MMPs), which degrade the ECM, along with other 
products associated with the senescence-associated secretory phenotype (SASP). C. Calcification process of a muscle cell induced by extracellular matrix (ECM) alterations. The 
increase in matrix metalloproteinases, the degradation of elastin fibers, and the accumulation of reactive oxygen species create a pro-inflammatory environment that promotes 
cellular dysfunction. In response, muscle cells release extracellular vesicles rich in calcium and inorganic phosphate, promoting the nucleation of hydroxyapatite crystals through 
proteins such as osteopontin. Additionally, these vesicles activate macrophages, which amplify inflammation and contribute to the destruction of healthy muscle tissue, further 
exacerbating the calcification process. 
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As the disease progresses, valve thickening and 
fibrosis result from excessive ECM deposition, 
particularly collagen accumulation, leading to tissue 
hardening and scarring [666]. TGF-β has been 
identified as a major regulator of this fibrotic phase, 
promoting ECM synthesis and deposition through 
canonical Smad signaling. Elevated TGF-β levels have 
been detected in fibrotic organs, including stenotic 
aortic valves, where it drives collagen overproduction 
[667]. However, this fibrotic phase is followed by 
increased ECM turnover, leading to a decline in 
collagen I and III content and further ECM 
remodeling. These events are tightly linked to VIC 
osteogenic differentiation, reinforcing the 
pathological transformation of the valve [668]. 
Nevertheless, hypoxia is involved in ECM remodeling 
and calcification. Neovascularization in aortic valves 
restores oxygen supply but also enhances VIC 
activation and ECM remodeling, contributing to the 
formation of calcific nodules [669]. A high expression 
of hypoxia-inducible factor-1 alpha (HIF-1α) has been 
detected in calcified nodules, driving ECM 
degradation through pathways involving NF-κB, 
MMP-2, MMP-9, and neutrophil gelatinase-associated 
lipocalin (NGAL) [670]. NGAL is known for its ability 
to enhance MMP-9 activity, accelerate ECM 
breakdown, and further destabilize the valve 
microenvironment [671]. In hypoxic aortic valves, the 
MMP-9-NGAL complex is upregulated, facilitating 
progressive tissue degradation. Moreover, the 
presence of ectopic elastic fibers in the fibrosa 
suggests disruptions in elastin homeostasis, 
indicating that hypoxia-driven ECM remodeling 
affects both collagen and elastin metabolism, further 
contributing to CAVD pathogenesis [672]. 

Osteoarthritis  

Osteoarthritis (OA) is a chronic, degenerative 
joint disease and a leading cause of disability 
worldwide [673]. It is characterized by progressive 
articular cartilage degeneration, subchondral bone 
remodeling, osteophyte formation, synovial 
inflammation, and pathological calcification of joint 
structures, all of which contribute to joint dysfunction. 
Despite its significant impact, there are currently no 
effective treatments to halt or reverse OA progression 
due to its complex biology [674]. While calcification is 
a normal physiological process in bone formation, its 
abnormal deposition in cartilage and soft tissues is a 
key pathological feature of OA [675].  The 
accumulation of calcium in the ECM exacerbates joint 
degradation, with calcium deposition in the cartilage 
matrix being closely linked to disease severity. 
Inhibiting ECM calcification has been shown to slow 
OA progression, enhancing the importance of 

understanding the molecular mechanisms behind 
cartilage calcification as a potential therapeutic target 
[676].   

Krüppel-like factor 10 (Klf10) is a transcription 
factor regulated by the TGF-β/Smad signaling 
pathway and has an important role in bone biology 
and cartilage homeostasis [677]. It contains a C2H2 zinc 
finger DNA-binding domain, enabling it to interact 
with promoter regions such as the CACCC element 
and GC box [678]. Overexpression of Klf10 in 
chondrocytes inhibits cell proliferation and migration, 
while its deletion has been shown to prevent 
chondrocyte hypertrophy, a key process in cartilage 
calcification and longitudinal bone growth. However, 
the role of Klf10 in pathological cartilage calcification 
remains poorly understood [679].   

Recent findings suggest that Frizzled9 (Fzd9), a 
G-protein-coupled receptor and a member of the Wnt 
signaling pathway, may be a downstream target of 
Klf10 [680]. Fzd9 is expressed in various tissues, 
including the brain, testes, skeletal muscle, and 
kidneys, and is known to regulate bone formation 
during fracture healing [681]. Unlike canonical Wnt 
signaling, Fzd9 functions through a β-catenin- 
independent mechanism to positively regulate bone 
remodeling [682]. Studies have shown that Klf10 
binds to the Fzd9 promoter, modulating its expression 
and influencing calcium ion entry into chondrocytes, 
which is critical for ECM mineralization [683]. In OA, 
calcium phosphate (BCP) and calcium pyrophosphate 
dihydrate (CPPD) crystals are the primary 
components of pathological calcification. These 
crystals are not only involved in ECM mineralization 
but also strongly associated with chondrocyte 
senescence, with CPPD having a more pronounced 
effect [684]. Experimental data indicate that 
Klf10-induced chondrocyte senescence is mediated 
through abnormal calcium deposition and that 
knockdown of Klf10 reduces ECM calcification in 
mouse primary chondrocytes [685]. Furthermore, 
restoring ECM calcification using BCP or CCPD 
crystals accelerates chondrocyte aging, reinforcing the 
link between calcification and cellular senescence 
[686]. In vivo, studies using a destabilization of the 
medial meniscus (DMM) model of OA In mice 
demonstrated that Klf10 knockdown mitigated 
cartilage ECM calcification and slowed cartilage 
degeneration. These findings suggest that targeting 
Klf10 and its downstream pathways may provide a 
novel therapeutic approach for preventing cartilage 
mineralization and chondrocyte species, thereby 
attenuating OA progression [686].   

Calcific aortic valve  

Calcific aortic valve (AoV) disease is a major 
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clinical challenge with poorly understood regulatory 
mechanisms [687]. Although enhanced cell-cell 
adhesion is known to contribute to cellular 
aggregation, its role in calcific lesion formation 
remains unclear [688]. Cadherin-11 (Cad-11) has been 
implicated in lesion formation in vitro, but its function 
in adult valve homeostasis and disease progression 
has not been established [689]. Using a novel 
double-transgenic Nfatc1Cre; R26-Cad11Tg/Tg 
mouse model, researchers induced conditional 
overexpression of Cad-11 in heart valves [690].  This 
led to hemodynamically significant aortic stenosis 
and the development of calcific lesions within the 
AoV leaflets. Cad-11 upregulation activated RhoA 
and Sox9 in VICs, promoting pathogenic ECM 
remodeling and calcification [691]. In vitro, mimicking 
in vivo lesions, molecular analyses confirmed the 
upregulation of osteoblastic and myofibroblastic 
markers, reinforcing the role of Cad-11 in osteogenic 
differentiation [692]. Further experiments 
demonstrated that inhibition of Rho-associated 
protein kinase (ROCK) significantly reduced calcific 
nodule formation, confirming that Cad-11-driven 
calcification is mediated through the RhoA/ROCK 
signaling pathway [693]. These findings identify 
Cad-11 as a role regulator of AoV calcification and 
suggest that targeting the Cad-11/RhoA/ROCK axis 
could serve as a therapeutic strategy to prevent or 
mitigate aortic valve calcification [692].  

Inflammation in the cardiovascular system 
induces significant alterations in the ECM, similar to 
its effects in other organ systems [694].  During this 
process, certain matrix proteins experience increased 
expression and secretion, while the pre-existing ECM 
undergoes degradation and remodeling through the 
action of MMPs [695]. In vascular tissues, 
inflammation is initiated when lipoprotein particles 
accumulate within the subendothelial matrix, where 
they undergo oxidative modifications, triggering an 
immune response and fueling a chronic inflammatory 
state [696]. Pro-inflammatory stimuli, including 
cytokines and lipid oxidation products, have been 
shown to promote the osteoblastic differentiation of 
vascular cells, contributing to atherosclerosis and 
valvular cell calcification in CAVD [697]. Molecular 
imaging studies further support this link, revealing 
that inflammation precedes matrix calcification in the 
vasculature and that inflammatory mediators are 
closely associated with intimal arterial calcification 
[698]. Recent research has enhanced the role of 
smooth muscle cell (SMC)-derived exosomes in 
vascular calcification [699]. Some studies 
demonstrated that exposure to TNF-α, a key 
inflammatory cytokine, enhances the production of 
exosomes by SMCs, which may contribute to ECM 

mineralization [700]. Additionally, cell apoptosis 
often accompanies an inflammatory response, and 
accumulating evidence suggests that apoptotic cell 
death further accelerates vascular calcification, 
reinforcing the connection between chronic 
inflammation and pathological ECM remodeling 
[701].  

Placenta calcification  

Also, in the placenta, the ECM has a pivotal role 
in its development and function, regulating processes 
such as angiogenesis, trophoblast invasion, and tissue 
remodeling [702]. In pathological pregnancies, such as 
those complicated by chronic venous disease (CVD) 
or preeclampsia (PE), ECM homeostasis is disrupted, 
leading to structural and functional alterations in 
placental tissue [703]. One of the most notable 
changes is placental villous calcification, which has 
been associated with abnormal gene expression and 
signaling pathways involved in osteogenesis, 
inflammation, and vascular remodeling [704].   

Among the key transcription factors involved in 
calcification, Runt-related transcription factor 2 
(RUNX2) has a crucial role in bone and vascular 
calcification by regulating the expression of 
osteogenic genes, including type I collagen, 
osteopontin (OSP), osteocalcin (OSC), and bone 
sialoprotein [704]. Interestingly, RUNX2, OSP, and 
OSC have been detected in vascular and placental 
calcifications, suggesting that pathological 
mineralization processes in the placenta may share 
molecular mechanisms with bone tissue [704]. Also, 
the Wnt/β-catenin signaling pathway, which is 
essential for embryonic development and tissue 
homeostasis, is activated in placental calcification and 
may contribute to dysregulated mineral deposition in 
CVD and PE [705].   

Another key regulator of placental pathology is 
pigment epithelium-derived factor (PDEF), which has 
been found at elevated levels in the placenta with 
venous insufficiency and is implicated in vascular 
dysfunction and calcification [706]. Transcription 
factors such as MSX2/HOX8 and SOX9, which are 
involved in osteogenesis and chondrogenesis, have 
also been identified as potential contributors to 
placental ECM remodeling [707]. These molecular 
pathways, however, remain poorly understood in the 
context of placental vascular disease, necessitating 
further investigation into their role in placental 
function and development.  

Beyond calcification, CVD during pregnancy has 
been linked to increased placental apoptosis, 
extracellular matrix remodeling, and cellular hypoxia, 
similar to the mechanism observed in PE and 
intrauterine growth restriction (IUGR) [708]. Placental 
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angiogenesis is particularly affected, with alterations 
in VEGF signaling having a pivotal role. Increased 
expression of VEGF and its receptor (VEGFR-1/Flt-1 
and VEGFR-2/KDR) has been reported in CVD 
placentas, enhancing their involvement in disease 
progression [709]. Notably, VEGF regulates the 
expression of soluble Flt-1 (sFlt-1), a decoy receptor 
for VEGF and placental growth factor (PIGF), which is 
highly upregulated in PE and other vascular 
pregnancy complications [710]. Dysregulation of the 
sFlt-1/PIGF ratio has been proposed as a biomarker 
for PE and IUGR, as lower PIGF levels correlate with 
adverse pregnancy outcomes and increased risk of 
urgent delivery [711].    

Another important factor in ECM remodeling 
and placental pathology is the insulin-like growth 
factor (IGF) system [712]. IGF-1 and its binding 
proteins (IGFBPs) are involved in fetal growth and 
nutrient transport across the placenta, and their 
dysregulation has been linked to IUGR [713]. In 
animal models, IGF-1 supplementation has been 
proposed as a potential therapy to restore placental 
function in growth-restricted pregnancies [714]. 
Furthermore, PAPP-A (pregnancy-associated plasma 
protein-A), a regulator of IGF bioavailability, is 
overexpressed in the placenta affected by CVD, with 
ECM alterations contributing to its dysregulated 
expression. Given that PAPP-A interacts with calcium 
ions and is involved in proteolysis, its upregulation 
may further exacerbate placental calcification, 
reinforcing the pathogenic role of ECM remodeling in 
vascular pregnancy disorders [715].  

The importance of ECM integrity in placental 
function extends beyond vascular regulation, as it also 
has a role in perinatal neurodevelopment [716]. 
Elevated levels of reelin and ECM glycoprotein have 
been associated with cerebral blood redistribution, 
suggesting a link between placental ECM changes and 
fetal neurological outcomes [717]. Additionally, 
dysregulated ECM composition, including collagen 
fiber alterations and increased villous calcification, 
has been consistently observed in the CVD-affected 
placenta [718]. These findings underscore the 
systemic impact of vascular pregnancy diseases, not 
only on the mother but also on fetal development.  

Impact of MMPs in calcification 

The ECM forms a loose, hydrated network rich 
in glycoproteins in healthy tissue, maintaining 
flexibility and structural integrity. However, as the 
valvular disease progresses, the ECM becomes 
increasingly dense and fibrotic due to excessive 
collagen deposition and remodeling [719]. In vitro 
studies have shown that calcifying vascular cells 
(CVCs) produce an ECM with elevated levels of 

collagen I and fibronectin but reduced collagen IV, 
compared to normal VSMC [720]. This shift in matrix 
composition creates a stiffer, more adhesive 
microenvironment, which may further promote 
mineralization and calcification. In advanced 
atherosclerosis, the intimal layer thickens and exhibits 
increased expression of matrix proteins, including 
thrombospondin, tenascin, osteopontin, osteocalcin, 
and dentin matrix acidic phosphoprotein 1 (DMP-1) 
[721]. In the aortic valve, VICs respond to injury by 
upregulating fibronectin production, further 
contributing to pathological ECM remodeling. As 
valvular disease advances, expression of key 
osteogenic markers, such as osteopontin and 
osteocalcin, continues to rise, alongside an increase in 
MMPs (MMP-1, MMP-3, and MMP-9) and their 
inhibitors, which regulate ECM turnover and 
degradation. In addition to structural alterations, 
inflammation-driven matrix changes impact the 
vascular lipid microenvironment [722]. The elevated 
fibronectin content in diseased tissue enhances 
lipoprotein retention, likely through its 
heparin-binding domain, while proteoglycans also 
facilitate lipoprotein binding. These interactions 
contribute to lipid accumulation, further exacerbating 
vascular dysfunction and disease progression [723].  

On the other hand, the MMP family is involved 
in early bone and dentin formation to fracture healing, 
and pathological calcification [724]. In osteoblasts and 
osteocytes, MMP-13 expression has been associated 
with osteogenic differentiation, and studies in 
MMP-2-deficient mice have demonstrated 
progressive loss of bone mineral density and impaired 
calcification, reinforcing the importance of ECM 
degradation in matrix mineralization [725]. Similarly, 
matrix vesicles, which initiate calcification, contain 
MMP-2 and MMP-9, further improving the 
contribution of proteolytic enzymes in remodeling the 
ECM and promoting calcium phosphate deposition. 
Beyond MMPs, another family of extracellular 
proteases, the ADAMTS family, has been implicated 
in ECM turnover during bone development. Enzymes 
such as ADAMTS-1, ADAMTS-4, and ADAMTS-5 
degrade proteoglycans like versican, which 
accumulate in the ECM and may regulate 
mineralization [726]. Evidence suggests that 
ADAMTSs and MMPs function cooperatively, 
accelerating ECM breakdown and facilitating matrix 
calcification during bone formation [727]. These 
findings underscore the complex interplay between 
ECM degradation, mineralization, and proteolytic 
enzyme activity [728]. While ECM proteins serve as 
essential regulators of bone and dentin calcification, 
further studies are needed to fully elucidate the 
balance between mineralization inhibitors and the 
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enzymes that degrade them [729]. Understanding 
these regulatory mechanisms could provide novel 
insights into bone regeneration, dentin repair, and 
pathological calcification processes [730].   

Interaction of ECM and cancer 
Traditional perspectives on cancer have evolved 

to recognize the ECM as a fundamental regulator of 
cell proliferation, migration, and apoptosis [731]. The 
organization and composition of ECM components 
form a tissue-specific microenvironment that has a 
primary action in tumor progression [732]. It is 
established that ECM is not merely a passive scaffold 
but undergoes continuous remodeling, actively 
influencing cell adhesion, migration, and signaling 
pathways [733]. Even minor distribution in ECM 
homeostasis can significantly affect cancer cell 
behavior, making ECM remodeling a key determinant 
in tumor growth and metastasis [734]. Its remodeling 
is a dynamic process governed by four primary 
mechanisms that collectively regulate tissue structure, 
biochemical signaling, and mechanical properties 
[735]. These processes include ECM deposition, which 
alters the abundance and composition of ECM 
components, thereby influencing both biochemical 
and mechanical properties [736]; post-translational 
chemical modifications, which affect the structural 
characteristics and biochemical functionality of the 
ECM [737]; proteolytic degradation, which releases 
bioactive ECM fragments and ECM-bound factors, 
often facilitating processes such as cell migration by 
eliminating physical constraints [738]; and 
force-mediated physical remodeling, which 
reorganizes ECM fibers, aligning them to create 
pathways for cellular migration [739]. Tissue 
homeostasis relies on the precise regulation of ECM 
deposition, modification, degradation, and 
organization, as even small disturbances in these 
processes can disrupt the balance and lead to 
pathological consequences [740]. ECM components 
serve as key ligands for various cell surface receptors, 
including integrins, Syndecans, and receptor tyrosine 
kinases, integrating ECM remodeling into broader 
cellular signaling networks [741]. Given this intricate 
interplay, it is not surprising that cancer cells and 
tumor-associated stromal cells actively manipulate all 
four remodeling mechanics [735].    

Collagen, the most abundant ECM protein, is 
central to maintaining tissue integrity and function 
[742]. Changes in collagen deposition, degradation, 
and crosslinking can lead to a loss of ECM 
homeostasis, contributing to tumor progression [743]. 
Tumor-associated ECM remodeling involves 
increased secretion of fibronectin and collagens I, III, 
and IV, enhancing the dynamic interplay between 

tumor cell and their microenvironment [744]. 
Excessive ECM protein deposition disrupts cell-cell 
adhesion and polarity, amplifying growth factor 
signaling and fomenting tumor progression [745]. 
However, the precise role of collagen is complex 
(increased collagen crosslinking promotes integrin 
signaling and tumor progression) [746]. Yet, the 
depletion of fibrillar collagens can also drive 
malignancy by altering biomechanical forces within 
the tumor niche [746]. Collage also exerts its influence 
through DDR1 and DDR2, which are implicated in 
cancer progression. DDR1 is essential for collective 
cell migration, while DDR2 [747]. has been identified 
in invasive breast tumors, where it stabilizes SNAIL1, 
promoting epithelial-mesenchymal transition (EMT) 
and metastasis [748]. The extracellular collagen 
network, through DDR signaling, thus modifying 
cell-intrinsic properties, reinforces tumor invasiveness 
[748].  

The ECM serves as both a barrier and a promoter 
of tumor progression, depending on its composition 
and structural modifications [735]. ECM gene 
signatures have also been used to stratify breast 
cancer subtypes, with tumors exhibiting high protease 
inhibitor expression correlating with better prognosis 
[749]. In contrast, those with high MMP expression 
are linked to poor survival and increased recurrence 
risk. MMPs have been linked to cancer progression, 
with initial research suggesting that MMP-mediated 
ECM degradation facilitates tumor invasion and 
metastasis [750]. Early studies demonstrated that 
MMP inhibition reduced tumor invasiveness in 
animal models, leading to clinical trials to block MMP 
activity [751].  Beyond degrading physical barriers, 
MMPs influence multiple signaling pathways, 
modulating both normal physiological processes and 
disease progression [752]. Their role extends beyond 
ECM remodeling to impact cellular communication, 
immune response, and tumor microenvironment 
regulation [753].  Also, ADAM and ADAMTS 
protease families, which share structural similarities 
with MMPs, have been implicated in tumor 
progression and are targeted by broad-spectrum 
inhibitors designed to suppress metzincin protease 
activity [754]. While MMPs are predominantly 
associated with cancer promotion, emerging evidence 
suggests that some MMPs and other extracellular 
proteases may exhibit tumor-suppressing effects 
under certain conditions [755]. Their diverse biolo-
gical functions extend beyond cancer, influencing 
tissue homeostasis and remodeling in both healthy 
and diseased states [756]. These findings underscore 
the dual nature of MMP activity, enhancing the need 
for a more nuanced therapeutic approach when 
targeting these enzymes in cancer treatment.  
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The lethality of most cancers is due to the 
dissemination of metastatic tumor cells and the 
growth of secondary tumors in distant organs [757]. 
Metastatic initiation requires tumor cells to invade 
peripheral tissues, enter the blood or lymphatic 
system (intravasation), and establish secondary 
tumors in receptive environments known as 
premetastatic niches [758]. MMPs facilitate this 
process by degrading ECM barriers, such as the 
endothelial basement membrane, creating 
pathological metastasis-prone vasculature [759]. 
MMP-1 expression has been particularly implicated in 
classifying atypical ductal hyperplasia into being 
versus pre-malignant lesions, reinforcing the ECM 
role in cancer progression and risk assessment [760].  
Also, MMP-1 activates proteinase-activated receptor-1 
(PAR-1), a G-protein-coupled receptor involved in 
thrombosis and inflammation [761]. This activation 
promotes cancer cell migration and invasion, 
particularly in breast, colon, and lung cancers, 
underscoring the significance of stroma-derived 
proteinases in tumor progression [762].  Bone 
metastases, a frequent complication in cancers such as 
breast and prostate cancer, are also mediated by 
MMPs [763]. MMP-7, expressed at the tumor-bone 
interface, facilitates osteolysis by cleaving receptor 
activator of nuclear factor κB ligand (RANKL), 
leading to osteoclast activation and enhanced bone 
degradation [764,765]. Similarly, MMP-1 and 
ADAMTS-1 activate EGF-like ligands, further 
stimulating the RANKL pathway and promoting 
bone metastasis. Beyond ECM degradation, MMPs 
contribute to tumor progression by reshaping the 
tumor microenvironment and influencing immune 
cell interactions [766]. Some studies using 
high-resolution multimodal microscopy confirm that 
MMP-14-driven pericellular proteolysis enables 
single-cell and collective-cell migration, reinforcing 
the importance of ECM remodeling in tumor invasion  
[767]. Interestingly, metastatic cells can switch from 
protease-dependent to protease-independent 
amoeboid migration, allowing them to navigate the 
ECM without proteolytic degradation [768]. 
Additionally, tumor-associated macrophages (TAMs) 
are key in tumor motility and intravasation [769]. 
Macrophage-derived MMP-2 and MMP-9 facilitate 
immune cell migration and may contribute to tumor 
cells in circulation by degrading the endothelial 
basement membrane [769].  

ECM remodeling extends beyond primary tumor 
sites, influencing metastatic colonization (Figure 7). 
Changes in ECM stiffness and elasticity, governed by 
collagen organization, crosslinking, and chemical 
modifications, allow tumor cells to interact with and 
adapt to their environment [770]. Increased ECM 

stiffness, driven by excessive collagen deposition and 
crosslinking, disrupts normal tissue architecture and 
promotes tumor invasion [771].  This process is 
largely mediated by LOX and LOX-like (LOXL) 
enzymes, which are frequently overexpressed in 
primary and metastatic tumors [771]. High LOX 
expression correlates with poor survival outcomes, 
particularly in breast cancer, where LOX-induced 
collagen crosslinking activates β1 integrin clustering, 
PI3K signaling, and focal adhesion formation, driving 
tumor progression [772].  Inhibiting LOX has been 
shown to reduce fibrosis and delay tumor 
development, demonstrating its potential as a 
therapeutic target [773]. MicroRNAs (miRNAs) are 
emerging as potent regulators of ECM remodeling. 
The miR-29 family, for example, modulates genes 
involved in ECM dynamics, including collagen 
chains, LOX, and MMPS, such as MMP2 and MMP9 
[774]. In breast cancer, miR-29b overexpression alters 
the tumor microenvironment and suppresses 
metastasis [775]. These findings suggest that 
non-coding RNAs, including long non-coding RNAs, 
may regulate the chromatin state and transcription of 
ECM genes, presenting new avenues for research into 
tumor-associated ECM regulation [776].    

On the other hand, the tumor microenvironment 
(TME) (Figure 8) has a dynamic action, undergoing 
continuous ECM remodeling that influences immune 
evasion, tumor progression, and therapy resistance 
[777]. Tumor and stromal cells actively modify the 
ECM, generating an inflammatory microenvironment 
that facilitates cancer invasion and metastasis [778].  

ECM components can act as danger-associated 
molecular patterns (DAMPs), activating pattern 
recognition receptors (PPRs) on immune cells and 
triggering pro-inflammatory responses [779]. 
ECM-degrading proteases liberate bioactive ECM 
fragments, including low-molecular-mass hyaluronan 
(LMM-HA) and biglycan, alongside matrix-bound 
cytokines and growth factors, fueling chronic 
inflammation [780]. For instance, biglycan activates 
Toll-like receptors (TLR4 and TLR2) on macrophages, 
promoting TNF-α and MIP-2/CXCL2 expression, 
which sustains tumor-associated inflammation [781].  

Beyond their role in modulating immune 
responses, ECM components also regulate immune 
cell infiltration and tumor immunity [782]. The ECM 
proteoglycan versican, when cleaved by ADAMTS 
proteases, generates versikine, a bioactive fragment 
that enhances CD8+ T-cell infiltration in colorectal 
cancer and multiple myeloma [783]. Versikine 
increases Interferon Regulatory Factor 8 (IRF8) 
expression in macrophages, promoting the generation 
of CD103+ CD11c+ MHCIIhi conventional dendritic 
cells (cDCs), which play a key role in anti-tumor 
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immunity [784]. However, the TAMs that infiltrate 
tumors contribute to ECM remodeling in ways that 
both support and suppress tumor progression [785]. 
M2-like TAMs facilitate proteolytic clearance of 
interstitial collagen through upregulated MMP 
expression, including pro-angiogenic TIMP-1-free 
MMP-9, which, along with neutrophils, increases 
ECM degradation and tumor invasion [786]. 

Additionally, TAMs contribute to ECM 
deposition, upregulating the synthesis and assembly 
of collagens I, VI, and XIV, leading to enhanced 
matrix cross-linking and stiffening, which favors 
tumor cell invasion [787]. Mechanical stress is another 
factor influencing immune evasion and therapy 
resistance in the TME, which arises from solid stress, 
fluid shear stress, and increased intratumoral 
pressure [788]. These physical forces drive cancer 
mechanobiology, altering tumor architecture and 
triggering immune defense mechanisms, including 
EMT and autophagy, suggesting that targeting these 

mechanical forces could enhance immunotherapy 
efficacy. 

The adaptive immune system, particularly 
cytotoxic T cells, is important in immune surveillance, 
identifying and eliminating tumor cells by 
recognizing mutated or foreign antigens [789]. 
However, the ECM exerts dual effects on the tumor 
immune response, acting as both a facilitator and a 
barrier to T-cell infiltration and activation [790].   

On the one hand, the ECM supports T-cell 
migration by providing structural pathways 
(migratory highways) that guide immune cells 
toward tumors. Also, ECM degradation products, 
generated through MMP-mediated cleavage, can act 
as chemoattractants, enhancing immune cell 
infiltration [791].  This has been demonstrated in 
inflamed lung tissue, where MMP12 and 
elastase-driven elastin digestion facilitates monocyte 
migration [792].   

 
 
 

 
Figure 7. The extracellular matrix (ECM) undergoes a series of processes that favor the creation of a tissue-specific microenvironment that promotes tumor progression. These 
modifications include changes in post-translational chemical modifications (panel a), which lead to changes in biochemical and mechanical properties, promoting 
epithelial-mesenchymal transition (EMT) (panel b). Excessive ECM protein deposition also contributes to these changes. Furthermore, it leads to alterations in cell adhesion and 
amplification of growth factor signaling (panel c). The ECM is also subject to proteolytic degradation (panel d). Together with force-mediated physical remodeling (panel e), 
both lead to ECM fiber remodeling, which, along with collagen deposition and crosslinking, contributes to changes in ECM stiffness and elasticity (panel f). The active modification 
of the extracellular matrix by stromal and tumor cells generates an inflammatory microenvironment that facilitates tumor invasion. Matrix proteases release bioactive fragments, 
such as the proteoglycan biglycan, which stimulate Toll-like receptors in macrophages by promoting the release of TNF-α and MIP-2/CXCL2. In addition, antigen-presenting cells 
(APCs) stimulate the activation of T lymphocytes by presenting tumor antigens (panel g). This sustained inflammation creates a favorable environment for metastasis. All these 
processes together promote cancer progression and increase its invasiveness, contributing to the transformation of the primary tumor into a distal secondary tumor. 
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Figure 8. A. Coordination of Tissue Health and Stability: Initial tumor lesion showing the basement membrane, composed of laminin, collagen IV, and nidogen, which separates 
epithelial cells from the extracellular matrix. The extracellular matrix contains fibroblasts, collagen I/III, fibronectin, hyaluronan, and other proteoglycans. B. Extracellular Matrix 
Modification in Tumor Progression: Neoplastic cells proliferate rapidly, releasing extracellular vesicles into the extracellular matrix and inducing mechanical strain on the 
basement membrane, causing it to bulge. Matrix metalloproteinases (MMPs) contribute to tumor progression by reshaping the tumor microenvironment, degrading ECM 
components locally, and influencing immune cell interactions. Immune cells like tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) also contribute 
to ECM remodeling by producing cytokines and growth factors that activate cancer-associated fibroblasts (CAFs). CAFs deposit collagen I, which is aligned by stromal-derived 
lysyl oxidase (LOX), while hyaluronan, a glycosaminoglycan involved in tissue hydration, absorbs water, increasing interstitial fluid pressure and promoting ECM swelling. C. Cell 
migration is guided by Collagen Arrangement: Neoplastic cells breach the basement membrane and migrate along aligned collagen fibers. Tumor-derived LOX further stiffens the 
ECM through collagen crosslinking. The production of cytokines and growth factors by immune cells is increased, and, therefore, the activation of CAFs is also enhanced, 
intensifying ECM remodeling and facilitating tumor invasion into surrounding tissues. 

 
Conversely, ECM stiffening can suppress T-cell 

function, impairing antigen representation by 
antigen-present cells (APCs) and disrupting T-cell 
activation [793]. The ligation of type I collagen to 
LAIR receptors can directly inhibit T-cell 
proliferation, while increasing ECM stiffness may 
interfere with CD3/CD28 signaling, reducing IL-2 
production (a cytokine essential for T-cell expression 
and Th1 differentiation) [794]. As a result, a 
tumor-associated stiffened ECM may compromise 
anti-tumor immunity, contributing to immune 
evasion and cancer progression [795].   

Chronic inflammation is a defining feature of 
tumors and significantly increases the risk of 
malignant transformation [796]. Notably, persistently 
inflamed tissue often exhibits fibrotic remodeling, 
characterized by excessive collagen and fibronectin 
deposition, which not only alters tissue architecture 
but also influences immune cell recruitment and 
activation [797].  

The ECM has a pivotal role in regulating 
immune infiltration. For instance, neutrophil 
recruitment is severely impaired in the absence of 

α6β1 integrin, a receptor for laminin [798]. At the 
same time, macrophage infiltration into 
atherosclerotic plaques requires DDR1 protein, which 
inhibits macrophage infiltration, enhancing the 
regulation of ECM complexity in immune cell 
migration [799].   

Beyond recruitment, ECM composition 
influences macrophage activation and polarization. A 
collagen-rich ECM supports macrophage proliferation 
and promotes M2 polarization, which is associated 
with pro-tumorigenic activity [800]. In contrast, a 
fibronectin-rich ECM enhances M1 macrophage 
polarization, which supports anti-tumor immune 
responses [801,802]. In tumor microenvironments, 
ECM stiffening, particularly through type I collagen 
accumulation, favors an immunosuppressive M2 
phenotype, potentially by diminishing TNF-α 
expression in response to inflammatory stimuli like 
LPS [803].  

For instance, the immune system can prevent 
tumor formation, yet age-related chronic 
inflammation (inflammaging) creates an environment 
that supports tumor initiation and progression [804]. 
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This persistent inflammatory state disrupts acute 
immune responses, promotes tissue degradation, and 
is linked to multiple age-related malignancies  [805]. 
Cellular senescence contributes significantly to 
inflammaging through the SASP, which maintains a 
low-grade inflammatory response [806]. Other factors, 
such as gut microbiota alterations, obesity, and ECM 
remodeling, further drive this process by increasing 
systemic levels of pro-inflammatory cytokines (IL-1, 
IL-6, TNF) [807].   

A key link between inflammaging and cancer is 
the recruitment of myeloid-derived suppressor cells 
(MDSCs), which impair T-cell function through the 
secretion of ARG1, TGF-β, and ROS [808]. In a 
melanoma mouse model, upregulated inflaming 
mediators (IL-1β, GM-CSF, and IFNγ) promoted 
MDSCS infiltration, accelerating tumor progression 
and metastasis. Pharmacological inhibition of MDSCS 
immunosuppressive activity reversed these effects, 
restoring T-cell function and reducing tumor growth 
[809].   

Similarly, regulatory T cells (Tregs), which 
suppress effector T-cell responses, are highly enriched 
in chronic inflammatory environments [810]. In an 
allergic contact dermatitis (ACD) model, the cytokine 
IL-33 forms part of the shifting of acute inflammation 
into a chronic, tumor-promoting state [811]. 
IL-33-deficient mice were protected against 
carcinogen-induced skin cancer, suggesting that the 
IL-33-Treg axis contributes to chronic inflammation- 
driven tumorigenesis, including colitis-associated 
colorectal cancer [812].  

In breast cancer, IL-6, a major inflammaging 
cytokine, has been identified as a driver of tumor 
progression, with high serum levels correlating with 
poor prognosis [813]. Also, several inflammaging- 
associated microRNAs (inframammary), such as 
miR-19, miR-21, miR-126, and miR-146a, have been 
linked to cancer progression, partially through their 
regulation of inflammatory cytokines and immune 
signaling pathways [814–816].  

Finally, it is observed that EVs are a crucial 
component of the SASP, facilitating intercellular 
communication by transporting proteins, mRNAs, 
and DNA between cells [817]. Notably, EVs can also 
accumulate within the ECM, interacting with matrix 
components and influencing ECM remodeling. The 
cargo within senescence-associated EVs is influenced 
by age, sex, and environmental exposures, 
underscoring their role in age-related diseases [818]. 
EVs have been implicated in idiopathic pulmonary 
fibrosis (IPF), a progressive fibrotic lung disease. 
Elevated exosomal miR-21, a key driver of 
inflammaging, has been detected in circulating EVs 
from IPF [819]. Interesting that senescent alveolar 

epithelial cells (AECs) play a pivotal role in IPF 
progression, with miR-21 upregulation observed in 
both fibrotic lung tissues and experimental models 
Furthermore, EVs from IPF lung fibroblasts contain 
miR-23 b-3p and miR-494-3p, which inhibit SIRT3, a 
regulator of mitochondrial homeostasis, and their 
expression correlated with disease severity [820].   

Senescent fibroblasts also increase EV secretion, 
amplifying paracrine signaling that accelerates 
mitochondrial damage and epithelial cell senescence, 
thereby perpetuating lung fibrosis [821]. However, EV 
effects are highly context-dependent [822]. For 
instance, EVs derived from inflammatory and 
myofibroblast cell death suggest a potential 
antifibrotic role in certain conditions [823].    

In essence, senescent cells not only lose their 
proliferative capacity but actively reshape the ECM in 
ways that create a fertile ground for cancer 
development and metastasis, transforming the 
surrounding tissue into a landscape that favors tumor 
cells’ invasion and survival (Figure 9).  

Applications of ECM in different 
pathologies 

The ECM is a highly dynamic, three-dimensional 
network that plays a crucial role in cell morphology, 
function, and tissue integrity. Under normal 
physiological conditions, ECM remodeling is tightly 
regulated, ensuring proper cellular behavior [824]. 
However, in pathological states such as cancer, ECM 
homeostasis is disrupted, leading to uncontrolled 
remodeling that drives disease initiation and 
progression [825].   

The ECM comprises numerous interacting 
molecules that communicate with neighboring cells 
via cell surface receptors, forming complex interaction 
networks [826]. Understanding these interactions is 
necessary to identify novel disease biomarkers and 
develop personalized therapeutic interventions. 
Recent advancements in big data analytics have 
facilitated the creation of online databases that enable 
stochastic evaluations of ECM interactions, helping 
researchers filter relevant molecular pathways for 
their specific studies [827].   

Some studies have a data-driven approach that 
addresses existing limitations in ECM research, 
broadens their understanding of ECM-mediated 
cellular functions, and has the potential to enhance 
targeted therapy developments [828].    

Ongoing studies continue to highlight the 
importance of ECM regulation in disease pathology, 
emphasizing the need for pharmacological strategies 
to modulate ECM interactions and restore tissue 
homeostasis.  
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Figure 9. Representation of how a senescent extracellular matrix (ECM) promotes tumor invasion and the metastatic process in cancer. The presence of senescence-associated 
fibroblasts around tumor cells is observed, which, together with the molecules released by the senescence-associated secretory phenotype (SASP), facilitates the dissemination 
of these tumor cells.  

 
The extracellular matrix is significantly altered in 

various diseases, including atherosclerosis, chronic 
inflammation, and cancer [829]. In recent years, 
attention has shifted towards targeting the tumor 
microenvironment, particularly ECM components, as 
they play a crucial role in tumor progression, drug 
resistance, and immune evasion [829]. Unlike healthy 
tissues, cancer-associated ECM undergoes abnormal 
remodeling, creating physical and biochemical 
barriers that hinder drug delivery and therapeutic 
efficacy [830].    

Targeting ECM components has emerged as a 
promising therapeutic strategy. Several clinical trials 
are investigating approaches such as chimeric antigen 
receptor (CAR) T-cell therapies against glypican-3 in 
liver cancer or heparanase inhibitors for multiple 
myeloma. Also, PGs, MMPs, and CD44/HA signaling 
pathways have been explored as potential drug 
targets due to their role in tumor growth and ECM 
interactions [831].  One major challenge in cancer 
therapy is inefficient drug transport caused by 
abnormal vasculature, increased interstitial fluid 
pressure (IFP), and excessive ECM deposition [832]. 
Tumor blood vessels are often disorganized and 
leaky, creating hypoxic conditions that promote 

tumor survival [833]. Strategies like vascular 
normalization through VEGF and PDGF inhibitors 
can improve blood flow and drug distribution [834]. 
Additionally, collagen-degrading enzymes (MMPs 
and collagenase) and LOX inhibitors have been 
shown to reduce ECM stiffness, enhancing drug 
penetration [835].   

Biomaterials are also being investigated as drug 
carriers to overcome ECM-related resistance. Natural 
and synthetic matrices, including collagen, gelatin, 
fibrin, and alginate, have been engineered to improve 
drug delivery and tissue regeneration  [836]. The 
incorporation of ECM-derived peptides into 
biomaterials has demonstrated synergistic effects, 
promoting vascularization, wound healing, and bone 
regeneration [837]. By interacting ECM-modulating 
therapies with existing cancer treatments, researchers 
aim to enhance drug efficacy, reduce metastasis, and 
improve patient outcomes [838].   

Decellularized ECM materials have become 
versatile in tissue engineering, taking forms such as 
patches, powders, and injectable hydrogels [839]. 
With additional processing, these ECM hydrogels 
offer minimally invasive delivery options for 
regenerative therapies   [840–843]. Derived from 
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various tissue sources, ECM hydrogels have been 
applied in models of ischemic injury, organ 
regeneration, and replacement [844]. They promote 
cellular infiltration, particularly of progenitor cells 
and macrophages, stimulate neovascularization, and 
support favorable functional remodeling [845,846].  

Although their mechanism of repair remains 
incompletely understood, ongoing research seeks to 
optimize the selection, processing, and modification 
of ECM hydrogels for specific regenerative 
applications [847]. New technologies like 3D printing 
and advanced modification protocols are enhancing 
the complexity of these hydrogels, enabling them to 
better mimic the target tissue environment [848]. 
While acellular ECM platforms are closest to clinical 
application, there is potential for combination 
therapies incorporating stem cells or growth factors, 
albeit with increased complexity and cost [849]. 
Commercial products and standardized 
manufacturing practices are emerging, setting the 
stage for broader clinical translation of ECM hydrogel 
therapies in regenerative medicine [850]. 

It should be noted, however, that while these 
emerging interventions are promising, a deeper 
critique regarding their clinical translatability, 
limitations, and the available preclinical and clinical 
evidence would be valuable. More studies are needed 
to fully understand the ECM functions, remodeling, 
and impact on human health. Table 9 summarizes all 
the therapeutic strategies discussed in this section. 

The therapeutic use of ECM in vascularization 
illness  

Cardiac regeneration through stem cell therapy 
is a promising yet complex approach due to the 
heart´s limited intrinsic repair mechanism and 

irreversible remodeling after injury [851]. Despite the 
early enthusiasm for resident cardiac stem cells 
(CSCs), their regenerative potential remains 
insufficient after myocardial infarction [852].   

In myocardial infarction, for example, the use of 
stem cell therapy modifies the stiffness of the 
infarcted heart tissue by altering ECM composition, 
making the scar more compliant and cellular [853]. It 
aims to restore heart function by repopulating 
cardiomyocytes, with various preclinical and clinical 
studies underway [854]. Preconditioning strategies, 
such as heat shock, hypoxia, and chemical treatments, 
enhance cell survival and engraftment by inducing 
cytoprotective pathways and promoting 
angiogenesis. Hypoxia upregulates HIF-1 and 
CXCR4, improving graft integration and cardiac 
repair [855]. However, clinical studies primarily focus 
on medical outcomes, with limited data on the 
long-term fate of transplanted cells and their effects 
on ECM remodeling [856].   

After this, the strategies of stem cell therapy 
include cell transplantation (autologous/allogenic 
stem cells) and stimulation of endogenous progenitor 
cells via pharmacological, biological, or ECM-based 
methods [857]. Different cell types, delivery methods, 
dosages, and administration timing contribute to 
variability in clinical outcomes, making direct 
comparisons difficult [858]. While stem cell therapy is 
known to alter ECM composition, its role in 
modulating biomechanical properties and facilitating 
ECM remodeling remains unexplored [859]. Given the 
unique composition of cardiac ECM, the ability of 
noncardiac-derived stem cells to restore heart-specific 
ECM proteins remains unclear, enhancing the need 
for further research [860].   

 
 

Table 9. Summarized table of the multiple therapist targets against ECM  

Therapeutic strategy Target/ Mechanism Application/ Benefit Status/ Evidence 
CAR T-cell therapy Glypican-3 Liver cancer targeting tumor ECM Ongoing clinical trials 
Heparanase inhibitors ECM degradation enzyme Multiple myeloma Preclinical/ clinical studies 
PGs, MMPs, CD44/HA signaling modulation ECM structural proteins and signaling 

pathways 
Tumor growth inhibition, ECM remodeling Preclinical evidence 

VEGF/PDGF inhibitors Vascular normalization  Improve blood flow and drug distribution Preclinical/ clinical studies 
Collagen-degrading enzymes (MMPs, 
collagenases) 

ECM stiffness reduction Enhance drug penetration Preclinical studies 

LOX inhibitors ECM crosslinking and stiffness Reduce ECM rigidity, facilitate therapy Preclinical evidence 
Biomaterials (collagen, gelatin, fibrin, alginate) Drug carriers, ECM-mimetic scaffolds Drug delivery tissue regeneration Preclinical studies 
ECM-derived peptides in biomaterial Promote vascularization and tissue 

regeneration  
Synergistic regenerative effects Preclinical studies 

Decellularized ECM hydrogels Structural ECM replacement, progenitor 
cell support 

Tissue regeneration, neovascularization Preclinical; approaching clinical 
translation 

ECM hydrogels + stem cell/ growth factors Combination therapy Enhanced regeneration and repair Preclinical; increased 
complexity/ cost  
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For instance, cardiac tissue engineering faces key 
challenges, primarily cell source limitations and 
scaffold design [861]. The myocardium´s stiffness, 
ranging from 20 kPa to higher values, is important in 
cell differentiation and functional maturation [862].  
Biodegradable scaffolds must endure the mechanical 
forces of the cardiac cycle while providing 
biochemical and structural cues for cell adhesion, 
migration, and integration [863]. Decellularized ECM 
is a promising scaffold due to its MMP-sensitive 
peptides, spatial organization, and growth factors, 
facilitating vascularization and host cell proliferation  
[864]. However, construction thickness is a major 
limitation, as oxygen diffusion constraints restrict the 
maximum viable thickness to 400 µm.  

Several drugs, including omecamtiv mecarbil, 
spironolactone, and agrin, have shown potential in 
targeting the cardiac ECM and cytoskeleton for 
cardiovascular disease (CVD) treatment [865]. 
Omecamtiv mecarbil, a myosin activator, enhances 
cardiac contractility and slightly reduces heart failure 
(HF) risk in patients with low ventricular ejection 
fraction (LVEF) [866]. Agrin, an ECM proteoglycan, 
aids in neuromuscular junction formation and has 
demonstrated protective effects against myocardial 
infarction and dilated cardiomyopathy (DCM) [867]. 
Spironolactone, a mineralocorticoid receptor 
antagonist, limits ECM turnover, reducing cardiac 
fibrosis and improving congestive HG outcomes. 
These examples enhance the reduction of cardiac 
fibrosis of ECM-targeting drugs in CVD management 
[868].  However, concerns remain regarding 
unintended effects due to the fundamental roles of 
ECM and cytoskeletal proteins in cellular function 
[869]. Despite this, ongoing research, supported by 

computational analyses, underscores the promise of 
ECM and cytoskeletal targeting as a novel approach 
to drug development [870]. Vascularization strategies 
are being explored to overcome diffusion limits, 
improving tissue survival and function in engineered 
cardiac grafts. Table 10 summarizes all the 
therapeutic agents used.  

The strategies of ECM therapy in cancer 
development 

The increasing global burden of cancer enhances 
the urgent need for precise treatment strategies and 
the discovery of novel therapeutic targets [871]. 
Traditional therapeutic approaches, including 
biomarker-based treatments, immunotherapy, and 
chemotherapy, have significantly improved patient 
prognosis [872].  Besides, aberrant gene expression 
and dysregulated signaling pathways in tumor cells 
drive pro-tumorigenic ECM remodeling, creating a 
hostile environment that impedes the infiltration of 
anti-tumor immune cells and therapeutic agents while 
simultaneously supporting cancer cell survival under 
stress induced by anti-cancer treatment [873,874]. The 
ECM, as shaped by cancer cells, is closely linked to 
multiple forms of drug resistance.  

In this sense, each tumor type is characterized by 
a unique gene signature, which is closely linked to 
specific ECM composition [875].  Understanding these 
ECM-related gene signatures may provide valuable 
insights into a tumor´s sensitivity to therapy [876]. 
Several studies have explored this connection; for 
instance, stromal-related gene signatures have been 
associated with prognosis in patients with large B-cell 
lymphoma undergoing chemotherapy [877].   

 

Table 10. Main ECM-targeted therapeutic agents and strategies in cardiovascular disease: preclinical and clinical evidence 

Therapeutic agent/ 
Strategy 

Target/ Mechanism Preclinical evidence  Clinical evidence Notes 

Stem cell therapy 
(autologous/ allogenic 
CSCs) 

Repopulate cardiomyocytes, modify 
ECM stiffness, promote angiogenesis 

Multiple animal models of myocardial 
infarction; enhanced survival with 
preconditioning (hypoxia, heat shock, 
chemical) 

Early-phase trials focus on 
cardiac function; limited 
long-term ECM data 

Variability due to cell type, 
dose, timing, delivery 
method 

Endogenous progenitor 
cell stimulation 

ECM-based or pharmacological 
activation of cardiac repair pathways 

Preclinical studies show improved 
vascularization and cell integration 

Limited clinical translation Still under investigation 

Decellularized ECM 
scaffolds 

Provide structural and biochemical 
cues; MMP-sensitive peptides 
facilitate remodeling 

Preclinical tissues engineering models; 
improve vascularization and hots cell 
proliferation 

Not widely applied clinically 
yet 

Oxygen diffusion limits max 
scaffold thicknees (near 400 
µm) 

Omecamtiv mecarbil Myosin activator; enhances 
contractility 

Preclinical cardiac models Shown to slightly reduce HF 
risk in patients with low 
LVEF 

Primarily targets 
cytoskeleton and 
contractility 

Agrin ECM proteoglycan: supports 
neuromuscular junction formation, 
reduced myocardial injury 

Animals models of MI and DCM Not yet in advanced clinical 
trials 

Demonstrates 
cardioprotective and 
anti-fibrotic effects 

Spironolactone Mineralocorticoid receptor antagonist; 
limits ECM turnover and fibrosis 

Preclinical CDV models Used in patients with 
congestive heart failure to 
improve outcomes 

Widely clinically applied; 
acts on ECM remodeling 
indirectly 
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Beyond genetic signatures, proteomic analyses 
of ECM proteins have also proven useful in 
distinguishing cancerous tissues from normal ones 
[878]. More recently, a study revealed that matrix 
components released into the bloodstream following 
anti-PD-1 treatment in melanoma patients were 
predictive of treatment outcomes [879]. Furthermore, 
TGF frequently controls ECM signature genes-β1 
signaling, with COL11A1 showing upregulated 
expression during ovarian cancer progression [880]. 
These findings underscore the critical role of ECM 
remodeling in cancer progression and resistance to 
therapy [881]. Identifying pivotal genes involved in 
ECM regulation could be instrumental in designing 
more effective and personalized therapeutic 
strategies.  

In cancer, immunotherapies harness the body´s 
immune system to combat cancer, offering promising 
treatment strategies. These approaches include 
immune checkpoint inhibitors, such as PD-1, PD-L1, 
and CTLA-4 blockers, which enhance anti-tumor 
activity within the TME [882]. Another significant 
advancement is adoptive cell therapy (ACT), 
particularly chimeric antigen receptor (CAR) T-cell 
therapy [883]. This method involves extracting T cells 
from patients, genetically engineering them to 
recognize tumor-specific antigens, and reintroducing 
them to target cancer cells more effectively [884]. 
While some of these therapies have led to complete 
tumor remission, their effectiveness varies among 
patients and tumor types. Understanding the factors 
influencing treatment response is important for 
advancing immunotherapy strategies [885]. The ECM 
plays a pivotal role in regulating immunotherapy 
efficacy. Studies have shown that ECM-related gene 
expression can prevent resistance to PD-1 blockade 
therapy [886]. For example, in metastatic urothelial 
cancer, TGF-β-induced peritumoral collagen creates a 
barrier that prevents CD8+ T cells from reaching 
tumor cells, leading to poor treatment outcomes [886]. 
In breast cancer, CAFs expressing ECM proteins and 
TGF-β signaling contribute to immune evasion by 
upregulating PD-1 and CTLA-4 in regulating T cells 
[887]. Similarly, collagen-induced CD8+ T cell 
exhaustion in lung tumors has been linked to immune 
checkpoint therapy resistance [888].   

Interestingly, ECM stiffness in tumors can also 
influence PD-L1 expression, with studies showing 
that depleting β3-integrin reduces PD-L1 levels and 
enhances PD-1 blockade efficacy [889]. These findings 
suggest that combating ECM-targeting strategies with 
immunotherapy could improve treatment response 
[890]. Indeed, targeting key ECM components such as 
TGF-β and PD-L1 has demonstrated increased ECM 
remodeling, enhanced CD8+ T cell infiltration, and a 

shift in macrophage activity towards an anti-tumor 
phenotype in colon and breast cancer models [891].   

ECM remodeling strategies also facilitate the 
penetration of immunotherapeutic agents into 
tumors. In preclinical models of breast cancer and 
melanoma, the use of hyaluronidase to degrade HA 
enhances the efficacy of PD-L1 inhibitors and cancer 
vaccines by improving drug delivery [892].  Similarly, 
oncolytic viruses engineered to express hyaluronidase 
generate low-molecular-weight HA, which activates 
NF-κB signaling in macrophages and promotes CD8+ 
T cell infiltration, ultimately enhancing PD-1 blockade 
efficacy in glioblastoma models [893].   

CAR-T cell therapy has shown limited success in 
solid tumors, partly due to the EC acting as a physical 
barrier that restricts T cell infiltration [894]. 
Expanding CAR-T cells ex vivo reduces their ECM 
remodeling capabilities, a limitation linked to low 
heparanase expression [895]. Engineering CAR-T cells 
to express heparanase has been shown to improve 
their tumor-penetrating ability and enhance 
anti-tumor effects [896]. Furthermore, training CAR-T 
cells enhances their cytotoxicity through AP-1 
pathway activation in preclinical studies [897].   

Another promising strategy exploits the high 
collagen content of tumors to direct 
immunotherapeutic agents, more precisely [898]. By 
conjugating PD-L1 and CTLA-4 inhibitors, as well as 
cytokines like IL-2, with a collagen-binding motif 
derived from the von Willebrand factor A3 domain, 
these agents can be selectively delivered to tumor 
sites, improving treatment specificity and efficacy 
[899,900].   

On the other hand, chemotherapy remains one of 
the most used strategies for cancer treatment, 
primarily targeting malignant cells by disrupting their 
proliferation mechanisms [901]. These mechanisms 
include inducing DNA damage, inhibiting 
microtubule, and protein function, blocking DNA 
synthesis, or interfering with the oncogenic signaling 
pathway [902]. However, chemotherapy is often 
associated with systemic side effects, such as 
myelosuppression, due to its impact on blood cell 
production [903]. Beyond its systemic effects on the 
immune system, it also alters the local tumor immune 
microenvironment (TIME), with evidence suggesting 
it can convert immunologically cold tumors into hot 
ones [904]. However, this effect is not universal and 
may vary between tumor types [905]. For instance, in 
pancreatic cancer, chemotherapy has been observed 
to promote tumor-supportive immunity by driving 
the differentiation of monocytes into myeloid-derived 
suppressive cells (MDSCs) through granulocyte- 
macrophage colony-stimulating factor (GM-CSF) 
secretion by cancer cells [906].   
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Immunogenic cell death (ICD), a key effect of 
certain cancer therapies such as chemotherapy and 
radiotherapy, triggers immune activation by releasing 
damage-associated molecular patterns (DAMPs) and 
tumor antigens, fostering an anti-tumor immune 
response [907]. However, chemotherapy can also 
induce changes in the ECM, including fibrosis, which 
is closely linked to inflammation [908]. In some cases, 
chemotherapy has been shown to promote pro-tumor 
effects within the TIME [909]. For example, paclitaxel 
treatment can lead CD8+ T cells to secrete LOX, 
facilitating collagen and elastin crosslinking in the 
lungs and ultimately promoting metastasis [910]. 
Despite these findings, the specific impact of 
chemotherapeutic and targeted therapies on ECM 
remodeling and TIME modulation remains largely 
unexplored, and their effects are likely dependent on 
the tumor´s pre-existing microenvironment.  

A clear example of chemotherapy-induced TIME 
alterations is seen in the effects of neoadjuvant 
chemotherapy (NACT) [911].  Concurrently, it 
promotes ECM remodeling, such as the upregulation 
of collagen VI, which has been associated with 
chemotherapy resistance and poor prognosis [912]. 
Notably, these ECM alterations are site-dependent, 
differing between metastatic sites and primary 
tumors, suggesting that the local TIME is a crucial 
determinant of ECM remodeling following 
chemotherapy [913].   

Targeting ECM remodeling has shown the 
potential to enhance chemotherapy responses.  For 
instance, in a breast cancer mouse model. The absence 
of MMP-9 improved the response to doxorubicin by 
increasing vascular permeability [914]. However, 

doxorubicin treatment has also been linked to the 
recruitment of MMP-9-expressing macrophages, 
which promote chemoresistance [915]. These findings 
highlight the need for further investigation into the 
relationship between ECM remodeling, immune 
modulation, and chemoresistance.  

As research progresses, integrating ECM- 
targeting strategies with immunotherapy could open 
new avenues for more effective and personalized 
cancer treatments. Altogether, these findings 
emphasize the complex interplay between 
chemotherapy, immunotherapy, the immune 
microenvironment, and ECM remodeling. A deeper 
understanding of these interactions could lead to 
novel therapeutic strategies that enhance treatment 
efficacy, minimize resistance, and improve patient 
outcomes by co-targeting the ECM and immune 
components in conjunction with the therapy against 
cancer. Table 11 summarizes the main therapeutic 
agents targeting the ECM in cancer. 

The use of extracellular vesicles in aging, 
calcification, and cancer  

Extracellular vesicles (EVs) are membrane- 
enclosed structures released by cells carrying a 
diverse range of molecular cargo [916]. These vesicles 
play crucial roles in cell-to-cell communication, 
influencing the fate of recipient cells in both local and 
distant tissues and serving as pathophysiological 
biomarkers [917]. Traditionally, EVs have been 
classified into three main types: exosomes, 
microvesicles, and apoptotic bodies [918].  

 

Table 11. ECM-targeted and ECM-modulating therapeutic strategies in cancer: preclinical and clinical evidence 

Therapeutic agent/ Strategy Target/ Mechanism Preclinical evidence Clinical evidence Notes 
Immune checkpoint 
inhibitors (PD-1, PD-L1, 
CTL4-A) 

Blockade of inhibitory immune 
pathways; ECM stiffness and 
TGF-β can impair efficacy 

ECM-related genes linked to resistance; ECM 
stiffness increases PD-L1 

Approved for multiple 
cancers; heterogeneous 
outcomes 

ECM modulation may 
improve infiltration and 
response 

CAR-T cell therapy Genetically engineered T cells to 
recognize tumor antigens 

Limited efficacy in solid tumors due to ECM 
barrier; engineered CAR-T expressing 
heparanase improve infiltration 

Approved in hematologic 
cancers; limited success in 
solid tumors 

ECM remodeling is key to 
enhance efficacy 

ECM remodeling enzymes 
(Hyaluronidase) 

Degrades hyaluronic acid, 
reduces stiffness, improves drug 
penetration 

Enhances efficacy of PD-L1 inhibitors, 
vaccines, and oncolytic viruses in melanoma, 
breast cancer, glioblastoma 

Ongoing preclinical and 
early translational research 

Improves immune 
infiltration and drug delivery  

Oncolytic viruses expressing 
hyaluronidase 

ECM degradation; HA 
breakdown; activation pf NF-κB 
in macrophages 

Improved CD8+ T cell infiltration and PD-1 
blockade efficacy in glioblastoma 

Preclinical models Synergistic with checkpoint 
inhibitors 

TGF-β inhibitors/ 
modulators 

ECM remodeling and immune 
invasion 

Increased CD8+ infiltration improved 
anti-tumor immunity in colon and breast 
cancer models 

Early clinical trials in solid 
tumors 

Targeting peritumoral 
collagen improves 
immunotherapy 

Collagen-binding conjugates 
(PD-L1, CTLA-4 inhibitors, 
IL-2) 

Targeted delivery to 
collagen-rich tumor ECM 

Improved specificity and efficacy in 
preclinical models 

Translational; no large 
clinical trials yet 

Increase immune activation 
in TME 

Chemotherapy (doxorubicin, 
paclitaxel, NACT) 

Disrupt cell proliferation; 
indirect effects on ECM and 
TIME 

ECM remodeling: collagen VI upregulation, 
MMP-9 effect on resistance 

Standard of care; evidence 
of ECM-driven resistance 

May promote fibrosis or 
metastasis; 
context-dependent 

MMP-9 modulation ECM degradation and vascular 
remodeling 

MMP-9 deletion improves doxorubicin 
response; macrophage-derived MMP-9 linked 
to resistance 

Preclinical studies  Dual role: sensitization vs 
chemoresistance 
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However, recent research has identified 
additional subtypes, including autophagic EVs, 
stress-induced EVs, and matrix vesicles [919].   

Autophagy has an important role in EV 
biogenesis and release. During this process, 
autophagosomes can fuse with endosomes to form 
amphiboles, which are subsequently secreted as 
autophagic EVs [920]. Also, processes such as EMT 
and cancer stemness contribute to EV production. 
Matrix vesicles and the EMC actively interact with the 
TME, influencing tumor progression [921].   

Extracellular vesicles from healthy cells are being 
explored as next-generation therapeutics due to their 
immunogenicity, biocompatibility, and ability to 
transfer bioactive agents [922]. While no ECM-related 
EV therapeutics are in clinical trials yet, studies 
suggest their role in modulating the matrix for tissue 
regeneration [923]. EVs are found in bodily fluids like 
blood, saliva, cerebrospinal fluid, and urine, making 
them valuable for biomarker discovery in diseases, 
including cancer [924,925]. These biomarkers help in 
diagnosis, predicting treatment response, and 
detecting pre-symptomatic conditions. EVs contain 
RNAs, including miRNA, mRNA, and long 
noncoding RNAs, which influence recipient cells 
[926,927]. Other RNA types, like circular RNA 
(circRNA) and PIWI-interacting RNA (piRNA), have 
also been identified in EVs [928].  

Aging and EVs 

EVs serve as fundamental mediators of 
intracellular communication, playing both beneficial 
and detrimental roles throughout the aging process 
[929]. EVs derived from young organisms, healthy 
tissues, and stem cells often function as positive 
signaling molecules, promoting cellular repair and 
regeneration [930]. In contrast, EVs from aged or 
damaged tissues, like tissues with SASP, can 
propagate cellular senescence and contribute to 
chronic inflammation [931].    

Over time, the balance between healthy and 
unhealthy vesicles may shift toward an increased 
presence of aging-promoting EVs, which reinforce 
tissue damage and accelerate the onset of age-related 
diseases [932]. This phenomenon underscores the 
need for targeted geroptherapeutic interventions.  

Two primary strategies have emerged to 
counteract the detrimental effects of aging-associated 
EVs [933]. The first approach focuses on eliminating 
or inhibiting cells that secrete unhealthy EVs [934]. 
The second strategy, which is focused on EV-based 
regenerative medicine, aims to replace this harmful 
vesicle with healthy EVs capable of restoring tissue 
homeostasis and mitigating age-related degeneration 
[935].   

Aging-related diseases currently account for 
more than 20% of the global disease burden, with 
cardiovascular disease leading to 30%, followed by 
cancer with 15%, and pulmonary, musculoskeletal, 
and neurodegenerative disorders [936].  Given the 
promising therapeutic potential of EV-based 
treatments in addressing key hallmarks of 
physiological aging, it is not surprising that these 
vesicles are being explored as next-generation 
therapies for age-related conditions [937] (Table 12).  

 

Table 12. Therapeutic strategies involving EVs in aging and 
age-related diseases 

EV source/ 
strategy  

Role/ mechanism Impact on 
aging 

Therapeutic potential 

EVs from young/ 
healthy tissues or 
stem cells 

Positive signaling 
molecules; promote 
repair and 
regeneration  

Counteract 
tissue damage, 
support 
homeostasis 

Regenerative medicine; 
anti-aging interventions 

EVs from aged or 
SASP-associated 
tissues 

Propagate 
senescence and 
chronic 
inflammation 

Accelerate 
tissue 
dysfunction 
and age-related 
diseases 

Target for elimination 
or inhibition 

Strategy 1: 
Inhibition/ 
elimination of 
harmful 
EV-secreting cells 

Prevent release of 
aging-promoting 
EVs 

Reduces 
propagation of 
senescence 
signaling 

Gerotherapeutic 
approach under study 

Strategy 2: 
EV-based 
regenerative 
therapy 

Administration of 
healthy EVs 

Restore tissue 
homeostasis, 
mitigate 
degeneration 

Next-generation 
therapies for 
cardiovascular, cancer, 
pulmonary, 
musculoskeletal, 
neurodegenerative 
diseases 

 

Calcification and EVs 

Apart from being involved in cancer, EVs 
interact with vascular calcification (Table 13). This 
process refers to the pathological mineralization of the 
ECM within blood vessels, a process commonly 
associated with the diseases explained above [938]. 
This phenomenon begins with the transdifferentiation 
of VSMCs into an osteoblast-like phenotype [939]. 
Under normal physiological conditions, VSMCs 
release EVs containing calcification inhibitors, which 
help maintain vascular homeostasis [940]. However, 
under pathological conditions driven by chronic 
inflammation or abnormal mineral metabolism, 
osteoblast-like VSMCs produce EVs that resemble 
matrix vesicles, similar to those involved in bone 
formation [941].   

These pathological EVs have an important role in 
destabilizing the ECM of blood vessels by promoting 
calcification in specific regions of the vessel walls 
[941]. This process increases the risk of thrombosis 
and vessel rupture, leading to severe cardiovascular 
complications. Recent studies have demonstrated that 
annexin AI is highly enriched in EVs released by 
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osteoblast-like VSMCs during vascular calcification 
[941]. This protein plays a key role in facilitating the 
aggregation of EVs within collagen fibrils of the ECM 
[942]. These aggregated EVs serve as nucleation sites 
for mineralization, which continues in the presence of 
elevated extracellular Ca+2 phosphate (PO43-) levels 
[943]. Unlike the mineralization process in bone and 
cartilage, which occurs within MVs, vascular 
calcification is driven by the surface phospholipids 
and annexins of EV aggregates that accumulate with 
the ECM [944].   

 

Table 13. Role of EVs in vascular calcification and ECM 
remodeling 

EV source/ 
strategy  

Cargo/ mechanism Impact on ECM and 
vessels 

Clinical relevance 

Normal VSMCs EVs contain 
calcification 
inhibitors 

Maintain vascular 
homeostasis, 
prevent pathological 
mineralization 

Protective 
mechanism against 
vascular disease 

Osteoblast-like 
VSMCs 
(pathological 
state) 

EVs enriched with 
annexin 1; resemble 
bone matrix 
vesicles 

Aggregate in 
collagen fibrils, act 
as nucleation sites 
for mineralization 

Promote vascular 
calcification, 
thrombosis, vessel 
rupture 

EV aggregation in 
ECM  

Surface 
phospholipids + 
annexins enable 
Ca2+/ PO43- 
deposition 

Destabilizes vessel 
wall structure, 
drives pathological 
mineralization 

Increases risk of 
severe 
cardiovascular 
complications 

 

Cancer and EVs 

In TME, EVs facilitate communication between 
cancer and stroma cells, carrying bioactive molecules 
like proteins, mRNA, and miRNA [945]. Some EVs 
modulate the ECM, contributing to chemotherapy 
resistance and metastasis, making them potential 
therapeutic targets and biomarkers (Table 14) [946]. 
Tumor-derived EVs can be detected in the 
bloodstream, enhancing their clinical relevance [947]. 
A subset of ECM-embedded nanovesicles, 
matrix-bound vesicles (MBVs), influences cell 
behavior and may have tumor-specific characteristics 
[948]. MBVs could serve as novel biomarkers, but 
further research is needed [948]. Cell culture models, 
particularly 3D cultures, help study EVs, as their 
molecular content closely resembles EVs found in 
patient tumors   [949].   

Through different mechanisms, the cancer 
cell-derived EVs play a central role in shaping the 
TME, thanks to tumor-derived EVs that contribute to 
the formation of immunologically cold tumors [950]. 
Furthermore, stromal cells in the TME release EVs 
that deliver bioactive molecules to cancer cells, 
promoting chemoresistance, immunotherapy 
resistance, dormancy stemness, and EMT [951]. This 
reciprocal communication between tumor-associated 
cells (TACs) and cancer cells via EVs fosters an 
immunosuppressive and therapy-resistant 

microenvironment [952].  
 

Table 14. EVs in the tumor microenvironment: roles in ECM 
remodeling, resistance, and therapeutic applications 

EV source/ 
type 

Cargo/ 
mechanism 

Impact on TME and 
ECM 

Clinical/ Therapeutic 
relevance 

Tumor-derived 
EVs 

Proteins, mRNA, 
miRNA 

Modulate ECM; 
promote chemotherapy 
resistance and 
metastasis; shape 
immunologically cold 
tumors 

Circulating 
biomarkers; potential 
therapeutic targets 

Stromal 
cell-derived 
EVs (CAFS, 
TACs) 

Deliver bioactive 
molecules  

Induce 
chemoresistance, 
immunotherapy 
resistance, EMT, 
stemness, and tumor 
dormancy 

Foster 
immunosuppressive, 
therapy-resistant 
microenvironment 

Matrix bond 
vesicles 
(MBVs) 

ECM-embedded 
nanovesicles 

Influence cell behavior; 
niche formation; 
tumor-specific features 

Potential novel 
biomarkers (need 
further research) 

Exosomes 
(drug delivery 
systems) 

Small molecules, 
proteins, nucleic 
acids, gene 
therapies 

Stable and 
biocompatible carriers; 
enable precise 
molecular transport 

Enhances drug 
solubility, targeting 
and reduces toxicity, 
promising for 
personalized therapy 

ECM-derived 
vesicles (matrix 
vesicles) 

Collagen, 
fibronectin, 
laminin 
interactions; 
MMPs on EV 
surface 

Promote tumor 
stiffness, 
mechanotransduction, 
immune modulation, 
vascular regulation 

Involved in poor 
prognosis tumors 
(pancreatic ductal 
adenocarcinoma); 
biomarkers 
(glypican-1) 

 
 
First, exosomes originate from endosomes 

through a three-step process: biogenesis, transport, 
and release [953]. They offer a promising drug 
delivery system due to their biocompatibility, 
stability, and ability to transport molecules efficiently 
[954]. Unlike conventional drugs, which often have 
low bioavailability and high toxicity, exosome-based 
delivery systems can enhance therapeutic efficacy 
while minimizing side effects [955]. They can carry 
small molecules, proteins, nucleic acids, and gene 
therapies, improving drug solubility and specificity 
[956]. Exosomes can be loaded with drugs via direct 
methods, such as incubation, electroporation, 
liposome transfection, or indirect methods, like 
engineering donor cells [957,958]. Various 
administration routes exist, but modifying exosomes 
to extend their circulation time enhances their 
effectiveness  [959]. Surface modifications, such as 
peptide fusions or magnetic therapies, further 
improve targeting, increasing their potential in 
personalized cancer therapy [960].   

Furthermore, ECM in the TME consists of 
proteins like collagen, fibronectin, and laminin, 
supporting cancer progression and immune 
interactions [961]. ECM-rich tumors, such as 
pancreatic ductal adenocarcinoma, often show poor 
prognosis due to their dense stroma, which enhances 
resistance to therapy  [962].  ECM acts as a barrier 
against drugs and immune responses while 
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increasing tumor stiffness and promoting 
mechanotransduction signaling [963,964]. Matrix 
vesicles, including extracellular matrix-bound and 
matrix-coated vesicles, play key roles in ECM 
interactions, affecting immune cell function and 
vascular regulation  [965]. CAFs and cancer cells 
produce matrix vesicles, adding niche formation and 
metastasis  [966]. ECM-bound molecules like 
glypican-1 serve as biomarkers, helping in early 
cancer detection. MMPs on EV surface contribute to 
cancer progression and tumor niche development 
[967].  

Regenerative medicine  
The molecular crosstalk between cells and the 

ECM is inherently dynamic and reciprocal. This 
complex interaction governs essential physiological 
processes, which are mechanisms vital for 
maintaining tissue homeostasis and enabling effective 
wound healing (Table 15) [968]. In tissue engineering, 
one of the greatest challenges lies in replicating the 
native ECM´s biochemical and physical properties 
[969]. These include surface topology, pore size, 
mechanical strength, biocompatibility, and 
degradation profile, factors that collectively influence 
tissue regeneration.  

 

Table 15. Decellularized extracellular matrix (dECM) 
biomaterials in tissue engineering and regeneration 

Strategy/ 
material 

Key properties Applications/ Impact Clinical/ 
Translational 
relevance 

Native ECM 
(baseline) 

Dynamic crosstalk; 
surface topology, 
pore size, 
mechanical strength, 
degradation profile 

Governs homeostasis, 
wound healing, and 
tissue regeneration 

Basis for 
biomimetic 
scaffold desing  

Decellularized 
ECM (dECM) 

Removal of 
immunogenic 
components; 
preservation of 
structural proteins 
and bioactive 
macromolecules 

Provides biologically 
relevant 
microenvironment; 
activated intrinsic 
regenerative pathways 

FDA-approved 
scaffolds (UBM, 
SIS) for skin 
muscle, GI tissue 

Whole organs/ 
tissue sheets 
(early 
strategies) 

Retain native 
architecture 

Limited by poor 
mechanical stability 
and incomplete 
mimicry 

Less practical for 
clinical use 

Micronized 
dECM 
(next-gen 
approach) 

Reconstituted into 
hydrogels, 
electrospun 
scaffolds, 
3D-bioprinted 
constructs 

Versatile formats: 
customizable to 
tissue-specific needs 

Expands 
application 
across multiple 
tissue types 

Tissue-specific 
dECM scaffolds 

Tailored biochemical 
& biochemical 
properties 

Cardiac, neural, 
cartilage muscle, liver, 
lung (well-developed); 
pancreas, kidney, vocal 
folds (emerging) 

Significant 
progress in 
scaffold design 
and regenerative 
outcomes 

 
 
As it is said before, decellularized ECM (dECM) 

materials have emerged as a promising solution, 

offering a biologically relevant microenvironment 
that supports specialized cell function and activates 
the body´s intrinsic regenerative pathways [970]. 
Through decellularization, immunogenic cellular 
components are removed, while structural proteins 
and bioactive macromolecules are largely preserved 
[971]. FDA-approved dECM scaffolds derived from 
sources like the urinary bladder matrix (UBM) and 
small intestinal submucosa (SIS) have already 
demonstrated clinical efficacy in regenerating skin, 
muscle, and gastrointestinal tissues [972,973].   

While early strategies focused on using entire 
decellularized organs or tissue sheets, issues related to 
mechanical stability and native tissue mimicry 
prompted the development of more adaptable forms  
[974]. Researchers have shifted toward micronized 
dECM particles, which are reconstituted into diverse 
biomaterial formats, including injectable hydrogels, 
electrospun scaffolds, and bioprinted constructs [975–
977]. These newer forms offer improved versatility, 
enabling customization to match the shape, 
mechanical properties, and biological demands of 
specific tissue types. 

Overall, dECM-based biomaterials represent a 
powerful platform for engineering tissue-specific 
scaffolds that can guide repair and regeneration [978]. 
The most developed applications so far span nine 
tissue types, including cardiac, neural, cartilage, 
muscle, liver, and lung, each showing significant 
progress in scaffold design and regenerative 
outcomes [979–984]. Additional tissues, like the 
pancreas, kidney, and vocal folds, are beginning to 
show promise as research expands [985–987].   

By tailoring scaffold composition and structure 
to each tissue´s unique physiological demands and 
leveraging advanced fabrication technologies, the 
importance of these strategies is to enable functional 
tissue regeneration through biomaterials that 
recapitulate the native ECM  [988,989].  

Discussion 
The body of work reviewed underscores the 

intricate interplay between the extracellular matrix 
(ECM), cellular communication, and the pathogenesis 
of a wide array of diseases, including cancer, 
cardiovascular calcification, and age-related 
degenerative disorders. Collectively, the data reveal 
that the ECM is far more than a mere structural 
scaffold; it is a dynamic, bioactive network that 
influences cellular behavior, modulates tissue 
homeostasis, and plays a decisive role in disease 
progression.   

In a healthy state, the ECM provides essential 
biochemical and mechanical cues to maintain tissue 
integrity and regulate cell proliferation, migration, 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

6859 

differentiation, and apoptosis. Its tightly controlled 
remodeling processes are fundamental for normal 
development, repair, and regeneration. However, in 
pathological conditions, these same remodeling 
processes become dysregulated. Aberrant ECM 
remodeling (driven by factors such as chronic 
inflammation, altered intercellular communication, 
and cellular senescence) can lead to the formation of 
fibrotic, stiff, and chemically modified matrices. This 
shift not only supports tumor progression and 
metastasis. For instance, in cancer, the ECM is 
remodeled by cancer cells and stromal components 
like cancer-associated fibroblasts (CAFs), which 
deposit excess collagen and other matrix proteins. 
This remodeling increases tissue stiffness, impedes 
the infiltration of anti-tumor immune cells, and 
establishes physical and biochemical barriers that 
reduce the efficacy of therapeutic agents.  

Furthermore, the role of cellular senescence in 
ECM remodeling is multifaced. While a sentence is a 
natural, protective mechanism (limiting the 
proliferation of damaged cells and facilitating tissue 
repair through the senescence-associated secretory 
phenotype (SASP)), its chronic accumulation can have 
deleterious effects. Senescent cells secrete a host of 
pro-inflammatory cytokines, chemokines, growth 
factors, and proteases, which contribute to a persistent 
inflammatory state termed inflammaging. The 
inflammatory milieu not only accelerates the ECM 
degradation but also fosters an environment 
conducive to tumor progression. The balance between 
beneficial and detrimental outcomes of senescence 
appears to shift unhealthy with age, leading to an 
accumulation of unhealthy EVs and other secreted 
factors that reinforce tissue damage and support 
disease progression.  

Also, cellular senescence, a defining feature of 
aging, establishes a critical nexus between 
calcification and cancer. As cells enter senescence, 
they secrete a complex cocktail of pro-inflammatory 
cytokines, proteases, and growth factors, which 
disrupt normal ECM remodeling.  This altered ECM 
not only becomes prone to pathological calcification, 
as seen in VSMC transforming into osteoblasts-like 
cells but also fosters a tumor-friendly 
microenvironment. In the context of cancer, 
senescence-driven ECM changes contribute to 
increased tissue stiffness and immune evasion, 
thereby facilitating tumor initiation, progression, and 
metastasis. Together, these interrelated processes 
underscore how age-related cellular senescence can 
promote both calcification and malignancy, 
highlighting potential targets for therapeutic 
intervention.  

Extracellular vesicles (EVs) further highlight 

their complex communication networks within 
tissues. EVs serve as critical mediators of intercellular 
signaling, transferring bioactive molecules (such as 
proteins, mRNA, miRNA, and long noncoding RNAs) 
across cells. In the tumor microenvironment (TME), 
EVs from cancer cells can modulate the ECM, 
promote angiogenesis, drive the polarization of 
immune cells into protumorigenic phenotypes, and 
even contribute to chemoresistance. Conversely, EVs 
derived from healthy cells or stem cells have emerged 
as promising therapeutic agents capable of promoting 
tissue repair and beneficially modulating the ECM. 
Their low immunogenicity, high biocompatibility, 
and intrinsic cargo-carrying capabilities make them 
attractive for use as drug delivery vehicles and 
biomarkers for disease progression.  

The potential of ECM-targeting and EV-based 
therapies is especially compelling in the context of 
regenerative medicine. Stem cell therapies, for 
instance, not only aim to replace lost or damaged 
cardiac cells but also seek to modulate the ECM of 
injured tissues. 

Evidence suggests that the engraftment of stem 
cells, such as mesenchymal stem cells (MSCs), can 
alter the stiffness and composition of the infarct zone, 
transforming a rigid car into a more compliant, 
heterogeneous matrix. This change in ECM properties 
is thought to facilitate the proliferation and 
integration of host cells, thereby improving cardiac 
function. However, challenges remain regarding the 
optimization of cell delivery, retention, and functional 
integration, with factors like scaffold design, oxygen 
diffusion, and biochemical matching playing pivotal 
roles.  

In oncology, the interplay between ECM 
remodeling and immune surveillance is becoming 
increasingly apparent. Traditional chemotherapy, 
while effective in targeting rapidly dividing tumor 
cells, can also alter the ECM, sometimes exacerbating 
chemoresistance and fostering an immunosup-
pressive environment. The use of immune checkpoint 
inhibitors and adoptive cell therapies has 
revolutionized cancer treatment, yet their efficacy is 
often limited by the physical and biochemical barriers 
imposed by an aberrantly remodeled ECM. Recent 
studies suggest that a combination of ECM-targeting 
strategies with immunotherapies could overcome 
these hurdles. For instance, agents that degrade 
excessive ECM components, such as hyaluronidase or 
collagenase, may improve drug penetration and 
enhance the infiltration and activation of immune 
cells. Moreover, strategies aimed at normalizing ECM 
composition (by targeting key enzymes like lysyl 
oxidase) could help restore a microenvironment more 
amenable to therapeutic intervention.  
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Another promising avenue is leveraging the 
unique gene and protein signatures of the ECM to 
predict therapeutic responses and guide personalized 
treatments. The identification of ECM-specific 
biomarkers, such as particular collagen subtypes or 
glycoproteins like glypican-A1, provides valuable 
prognosis information and may inform the selection 
of targeted therapies. Additionally, computational 
and big data approaches have enabled the 
development of ECM gene expression signatures that 
correlate with treatment sensitivity or resistance, 
offering a powerful tool for patient stratification.  

In summary, the multifaced roles of ECM in 
regulating cellular behavior, modulating the immune 
response, and influencing the efficacy of therapeutic 
interventions are increasingly recognized as critical 
determinants of disease progression and treatment 
outcomes. Whether through direct targeting of ECM 
components, modulation of intercellular 
communication via EVs, or the integration of 
advanced regenerative medicine strategies, the 
emerging evidence underscores the potential for 
novel therapeutic approaches that address the 
underlying ECM dysfunctions in a range of diseases. 
Future research must continue to elucidate the precise 
mechanism of ECM remodeling and its interplay with 
cellular senescence, inflammation, and immune 
therapy. By doing so, it can pave the way for more 
effective, personalized interventions that not only 
treat the symptoms of disease but also restore tissue 
homeostasis and function.  

Conclusion 
The body of evidence reviewed establishes the 

ECM as a central regulator of tissue homeostasis, 
disease initiation, and therapeutic response. Far from 
being a passive scaffold, the ECM emerges as a 
dynamic and bioactive network that integrates 
mechanical, biochemical, and immunological signals, 
thereby shaping cellular behavior and influencing the 
trajectory of health and disease. Its dysregulation, 
whether through chronic inflammation, senescence, 
or aberrant remodeling, contributes to fibrosis, 
calcification, cancer progression, and resistance to 
therapies, underscoring its dual role as both a 
mediator of physiological repair and a driver of 
pathology.   

Importantly, the growing underscoring of 
ECM-cell interactions has opened new therapeutic 
avenues. Approaches that combine ECM-targeting 
strategies with immunotherapies or regenerative 
medicine hold particular promise, as they address not 
only the tumor or damaged tissue but also the 
supportive microenvironment that sustains disease. 
The emerging role of extracellular vesicles as 

mediators of ECM remodeling and as vehicles for 
drug delivery adds another layer of therapeutic 
potential, bridging molecular communication with 
translational applications. 

Looking ahead, the challenge lies in translating 
these mechanistic insights into clinically effective 
interventions. This will require refining ECM-targeted 
therapies, integrating predictive biomarkers, and 
harnessing big data approaches to better stratify 
patients and personalize treatments. At the same time, 
advancing scaffold design, stem cell delivery, and 
exosome engineering will be essential for regenerative 
medicine to realize its full potential.  

In conclusion, positioning the ECM at the center 
of therapeutic innovation offers a unique opportunity, 
not only to combat disease more effectively but also to 
restore tissue balance and resilience. By continuing to 
explore its complexities with rigor and creativity, 
future research can transform the ECM from a barrier 
to therapy into a gateway for more precise, durable, 
and patient-tailored interventions.  
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