

1 **Table S1** A summary of information about the clinical characteristics, gender, age, tumor
 2 stage and molecular subtype of ER+ BC patients

Patient	Gender	Age	ER status	Stage	Lymph node metastasis	Ki-67
1	Female	33	1+	II	-	40
2	Female	59	3+	III	+	35
3	Female	42	2+	II	+	90
4	Female	58	3+	II	+	30
5	Female	28	2+	II	-	50
6	Female	43	3+	II	+	30
7	Female	50	3+	II	-	10
8	Female	44	3+	II	-	30
9	Female	50	2+	I	+	40
10	Female	45	3+	III	+	35
11	Female	50	3+	II	-	25
12	Female	30	1+	II	+	25
13	Female	37	3+	II	-	50
14	Female	65	1+	II	-	60
15	Female	50	2+	II	-	20
16	Female	36	1+	II	+	40
17	Female	41	3+	II	-	25
18	Female	42	3+	II	-	10
19	Female	47	3+	II	+	30
20	Female	67	3+	II	-	80
21	Female	65	1+	II	+	70
22	Female	50	2+	II	-	10
23	Female	66	1+	II	-	50
24	Female	50	3+	III	+	50
25	Female	49	2+	II	+	30
26	Female	52	2+	II	-	70
27	Female	46	1+	II	-	25
28	Female	38	2+	II	-	20
29	Female	46	2+	I	-	20
30	Female	79	3+	II	+	30
31	Female	58	3+	II	-	15
32	Female	66	3+	II	+	25
33	Female	57	3+	II	+	5
34	Female	48	3+	II	+	3
35	Female	49	3+	II	-	30
36	Female	47	1+	II	-	60
37	Female	52	1+	II	-	15
38	Female	53	1+	III	+	70
39	Female	48	2+	III	-	80
40	Female	59	3+	III	+	60

Table S1 (continued)

Patient	Gender	Age	ER status	Stage	Lymph node metastasis	Ki-67
41	Female	37	3+	III	+	35
42	Female	38	2+	II	+	90
43	Female	68	3+	II	+	30
44	Female	33	2+	II	-	50
45	Female	37	3+	II	+	30
46	Female	42	3+	II	-	10
47	Female	36	3+	II	-	30
48	Female	40	2+	I	+	40
49	Female	48	3+	II	-	25
50	Female	29	3+	II	-	50
51	Female	68	1+	II	+	60
52	Female	43	2+	II	-	20
53	Female	39	3+	II	-	30
54	Female	35	3+	II	-	10
55	Female	42	3+	II	+	20
56	Female	71	3+	II	-	80
57	Female	64	1+	II	+	70
58	Female	46	2+	II	-	10
59	Female	62	1+	II	-	50
60	Female	36	3+	III	+	50
61	Female	43	2+	II	+	25
62	Female	56	2+	II	-	70
63	Female	40	1+	I	-	25
64	Female	34	2+	II	-	20
65	Female	52	2+	I	-	25
66	Female	77	3+	II	+	30
67	Female	55	3+	II	-	15
68	Female	61	3+	II	+	30
69	Female	47	3+	II	+	5
70	Female	43	3+	I	+	3
71	Female	36	3+	II	-	30
72	Female	47	1+	III	-	70
73	Female	39	3+	III	+	60
74	Female	57	2+	II	-	90
75	Female	71	3+	II	+	30
76	Female	41	2+	II	-	50
77	Female	46	3+	II	-	10
78	Female	34	2+	I	+	40
79	Female	72	1+	I	+	60
80	Female	47	2+	II	-	30
81	Female	63	3+	II	-	80
82	Female	69	1+	II	+	70

Table S1 (continued)

Patient	Gender	Age	ER status	Stage	Lymph node metastasis	Ki-67
83	Female	41	2+	II	-	10
84	Female	70	1+	II	-	50
85	Female	44	3+	III	+	50
86	Female	33	2+	II	+	30
87	Female	47	2+	II	-	70
88	Female	67	3+	II	+	30
89	Female	52	3+	II	-	15
90	Female	69	3+	II	+	30
91	Female	63	3+	II	+	30

6 **Table S2** Sequences of shRNAs

shRNAs	Sense Strand (5'-3')
sh <i>circESR1</i> -1	CCGGGGTGCCAGGACATAACGACTGGATCCAGTCGTTATGTCCTGGCA CCCTTTG
sh <i>circESR1</i> -2	CCGGGAGGGTGCCAGGACATAACGAGGATCCTCGTTATGTCCTGGCACC CTCTTTG
sh <i>circESR1</i> -3	CCGGGGTGCCAGGACATAACGACTAGGATCCTAGTCGTTATGTCCTGGC ACCTTTTG
sh <i>HNRNPAB</i> -1	CCGGTGGAAGCAAGTGTGAGATCAACTCGAGTTGGCAATTCAATGGCC CCATTTTG
sh <i>HNRNPAB</i> -2	CCGGTGAGGCCATTGAATTGCCAATCTGAGATTGGCAATTCAATGGCC TCATTTTG
sh <i>HNRNPAB</i> -3	CCGGTGAATTCCAATGGATCCAAACTCGAGTTGGATCCATTGGCAAT TCATTTTG
sh <i>SPI</i> -1	CCGGGCTGGTGGTGATGGAATACATGGATCCATGTATTCCATCACCACC AGCTTTTG
sh <i>SPI</i> -2	CCGGGCAGCAACTTGCAGCAGAATTGGATCCAATTCTGCTGCAAGTTGC TGCTTTTG
sh <i>SPI</i> -3	CCGGCCCAAGTTATTCTCTCTAGGATCTAAGAGAGAAATAAACTT GGGTTTTG

8 **Table S3** Primers for cloning

Primers for plasmid construction	Sense Strand (5'-3')	Antisense Strand (5'-3')
<i>circESR1</i> cloning primers	CGGAATTCTGAAATATGCTATCTT ACAGGACATAACGACTATATGTGT CCAGC	CGGGATCCTCAAGAAAAAATAT ATTCACCTGGCACCCCTC
<i>circESR1</i> -linear cloning primers	GGAATTCGACATAACGACTATATG TGTCCAGCC	CGGGATCCCTGGCACCCCTTC
<i>HNRNPAB</i> cloning primers	TCCATAGAAGATTCTAGAGCCACC ATGTCGGAAGCGGGCGAGGA	ATCGTCATCCTTGTAGTCGTATG GCTTGTAGTTATTCT
<i>HNRNPAB</i> truncation-1	CTTCTTCATAGCCATGTTCTTGCTG GCGTTG	AACGCCAGCAAGAACATGGCTA TGAAGAAG
<i>HNRNPAB</i> truncation-2	GACTTCTTGGGCTGCTTCATAGCC ATGGC	GCCATGGCTATGAAGCAGCCCA AAGAAGTC
<i>HNRNPAB</i> truncation-3	GACTTCTTGGGCTGGTTCTTGCTG GCGTTG	CAACGCCAGCAAGAACACCAGCCC AAAGAAGTC
<i>HNRNPAB</i> promoter primers	GGGGTACCCCTGAGGCAGGAGAAC GCTAGAACCTGG	CTAGCTAGCCCACGGAGCTGCTC CAACTGTGTCTC
<i>sgHNRNPAB</i> genome	CACCGTTGCAGGAGCCGCCGCC T	AAACAGGCGGGCGGCTCCTGC AAC
<i>HNRNPAB</i> genome knock-in-1	CGCGGATCCAATAATAAAAAGGA AGAAAAAGAAAGACAAATGATT ACAGG	ATGATCTTATAATCACCGTCAT GGTCTTGTAGTCGCTAGGACGA GGCGC
<i>HNRNPAB</i> genome knock-in-2	TATAAAAGATCATGACATCGATTAC AAGGATGACGATGACAAGATGTCG GAAGCG	CCGGAATTCAATGGTAGGGTGA GACACACGGCAACAAAGTC
<i>SPI</i> cloning primers	GGAATTGCCACCATGAGCGACCA AGATC	GACCGGTGAAGCCATTGCCACTG ATATTAATGGAC

10 **Table S4** Sequences of siRNAs

siRNAs	Sense Strand (5'-3')
siNC	UUCUCCGAACGUGUCACGUTT
si <i>JUN</i> -1	CGGACCUUAUGGCUACAGUAA
si <i>JUN</i> -2	CGCAAACCUCAGCAACUCAA
si <i>FOS</i> -1	GCGGAGACAGACCAACUAGAA
si <i>FOS</i> -2	UCUGCUUUGCAGACCGAGAUU
si <i>FOXA1</i> -1	GCGUACUACCAAGGUGUGUAU
si <i>FOXA1</i> -2	GCAGCAUAAGCUGGACUUCAA
si <i>SP1</i> -1	GCUGGUGGUGAUGGAAUACAU
si <i>SP1</i> -2	GCAGCAACUUGCAGCAGAAUU

11

12 **Table S5** Sequences of sgRNA

sgRNAs	Sense Strand (5'-3')
sg <i>HNRPAB</i> -1	CACCGCAACGCCAGCAAGAACGAGG
sg <i>HNRPAB</i> -2	CACCGGATCAACGCCAGCAAGAACG
sg <i>HNRPAB</i> -3	CACCGATTCCCGCTGGGGCGCCG

13

14 **Table S6** Primers for qRT-PCR

Primers for qRT-PCR	Sense Strand (5'-3')	Antisense Strand (5'-3')
<i>ACTB</i>	CACCATTGGCAATGAGCGGTT	AGGTCTTGCGGATGTCCACGT
<i>circESRI</i>	AGGGAGCTGGTTCACATGAT	TCTCCCTCCTCTCGGTCTT
<i>ESRI</i>	GCTTACTGACCAACCTGGCAGA	GGATCTCTAGCCAGGCACATT
<i>ACTB</i> -converge	GTGGCCGAGGACTTGATTG	CCTGTAACAACGCATCTCATATT
<i>ACTB</i> -diverge	AAAGGCGAGGCTCTGTGCT	GGGCTTACCTGTACACTGACTTGA
<i>CDR1as</i> -converge	TTTCCGATGGCACCTGTGTCAAG	CTGGAAGACCTTGAGATTATTGGA AGAC
<i>CDR1as</i> -diverge	ACGTCTCCAGTGTGCTGA	CTTGACACAGGTGCCATC
<i>circESRI</i> -converge	GAAGAACAGCCTGGCCTTGT	GTCTGCCAGGTTGGTCAGTA
<i>circHIPK3</i>	TATGTTGGTGGATCCTGTTGGC A	TGGTGGTAGACCAAGACTTGTGA
<i>U1</i>	TCCCAGGGCGAGGCTTATCCATT	GAACGCAGTCCCCACTACCACAA AT
<i>TFF1</i>	CCAGTGTGCAAATAAGGGCTGC	AGGCAGATCCCTGCAGAAGTGT
<i>GREB1</i>	GGTCTGCCTTGCATCCTGATCT	TCCTGCTCCAAGGCTGTTCTCA
<i>PGR</i>	GTCGCCTAGAAAGTGCTGTCAG	GCTTGGCTTCATTTGGAACGCC
<i>CDK1</i>	GGAAACCAGGAAGCCTAGCATC	GGATGATTCACTGCCATTTGCC
<i>CDK6</i>	GGATAAAGTCCAGAGCCTGG G	GCGATGCACTACTCGGTGTGAA
<i>HNRNPAB</i>	TCCCAACACTGGACGGTCAAGA	GGGTCTTCTTCATGCCATGG
<i>circESRI</i> 's Alu-a	GTTGGATGTGGTGGGTTCCA	TGGGTGGTGACGAAGTCAG
<i>circESRI</i> 's Alu-b	GACCAGCCTGACCAACAT	GGGTTCAAGCGATTCTCC
<i>circESRI</i> 's Alu-c	CTGTGGTCCCAGTTATGG	TATGACACGGTCTTGCTCT

16 Table S6 (continued)

Primers for qRT-PCR	Sense Strand (5'-3')	Antisense Strand (5'-3')
<i>circESRI</i> 's Alu-d	AGACACAGTGGCTGAAGTGA	AACGAATACTGGGGCAGG
<i>JUN</i>	CCTTGAAAGCTCAGAACTCGGAG	TGCTCGTTAGCATGAGTTGGC
<i>FOS</i>	GCCTCTCTTACTACCACTCACC	AGATGGCAGTGACCGTGGGAAT
<i>FOXA1</i>	GCAATACTCGCCTTACGGCTCT	GGGTCTGGAATACACACCTTGG
<i>SPI</i>	ACGCTTCACACGTTGGATGAG	TGACAGGTGGTCACTCCTCATG

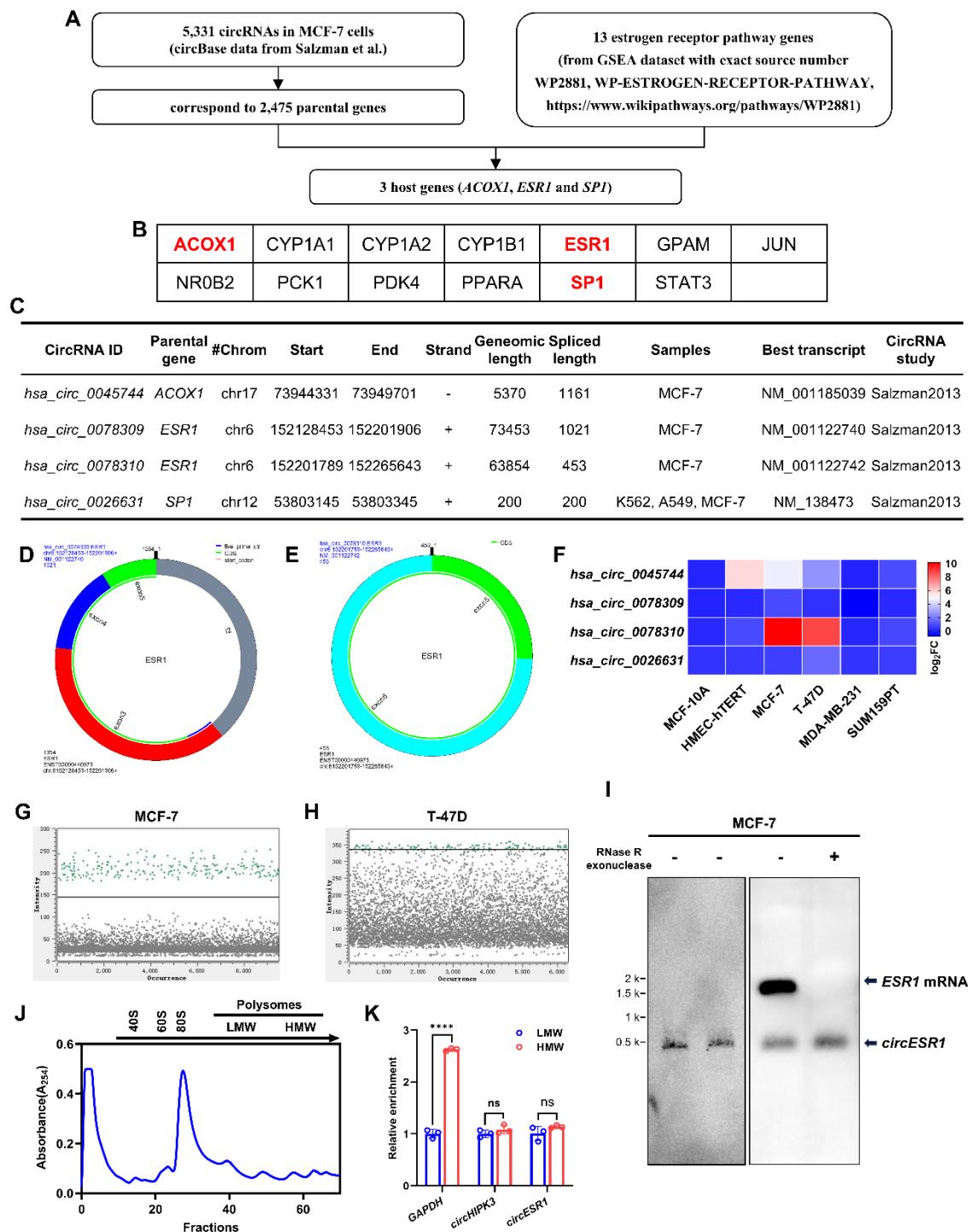
17

18 **Table S7** Primary antibody used in this study

Antibody	Dilution	Catalog#	Company	Species	Purpose
ACTB	1:20000	20536-1-AP	Proteintech	Rabbit	WB
CCND1	1:500	sc-8396	Santa Cruz	Mouse	WB
CDK1	1:2000	10762-1-AP	Proteintech	Rabbit	WB
CDK1	1:500	10762-1-AP	Proteintech	Rabbit	IHC
CDK6	1:500	14052-1-AP	Proteintech	Rabbit	WB
CDK6	1:100	14052-1-AP	Proteintech	Rabbit	IHC
ER α	1:1000	#8644S	Cell Signaling Technology	Rabbit	WB
Flag	1:500	66008-4-Ig	Proteintech	Mouse	WB
Flag	2 μ g	20543-1-AP	Proteintech	Rabbit	RIP, IP
HNRNPAB	1:1000	sc-376411	Santa Cruz	Mouse	WB
	1:10000	ab199724	Abcam	Rabbit	WB
HNRNPAB	2 μ g	ab199724	Abcam	Rabbit	RIP
HNRNPAB	1:1000	ab199724	Abcam	Rabbit	IHC
Lamin B1	1:2000	12987-1-AP	Proteintech	Rabbit	WB
SP1	1:5000	21962-1-AP	Proteintech	Rabbit	WB
SP1	1:100	21962-1-AP	Proteintech	Rabbit	IHC
TFF1	1:500	13734-1-AP	Proteintech	Rabbit	WB
Tubulin	1:50000	66031-1-Ig	Proteintech	Mouse	WB

20 **Table S8** Sequences of pull-down probes

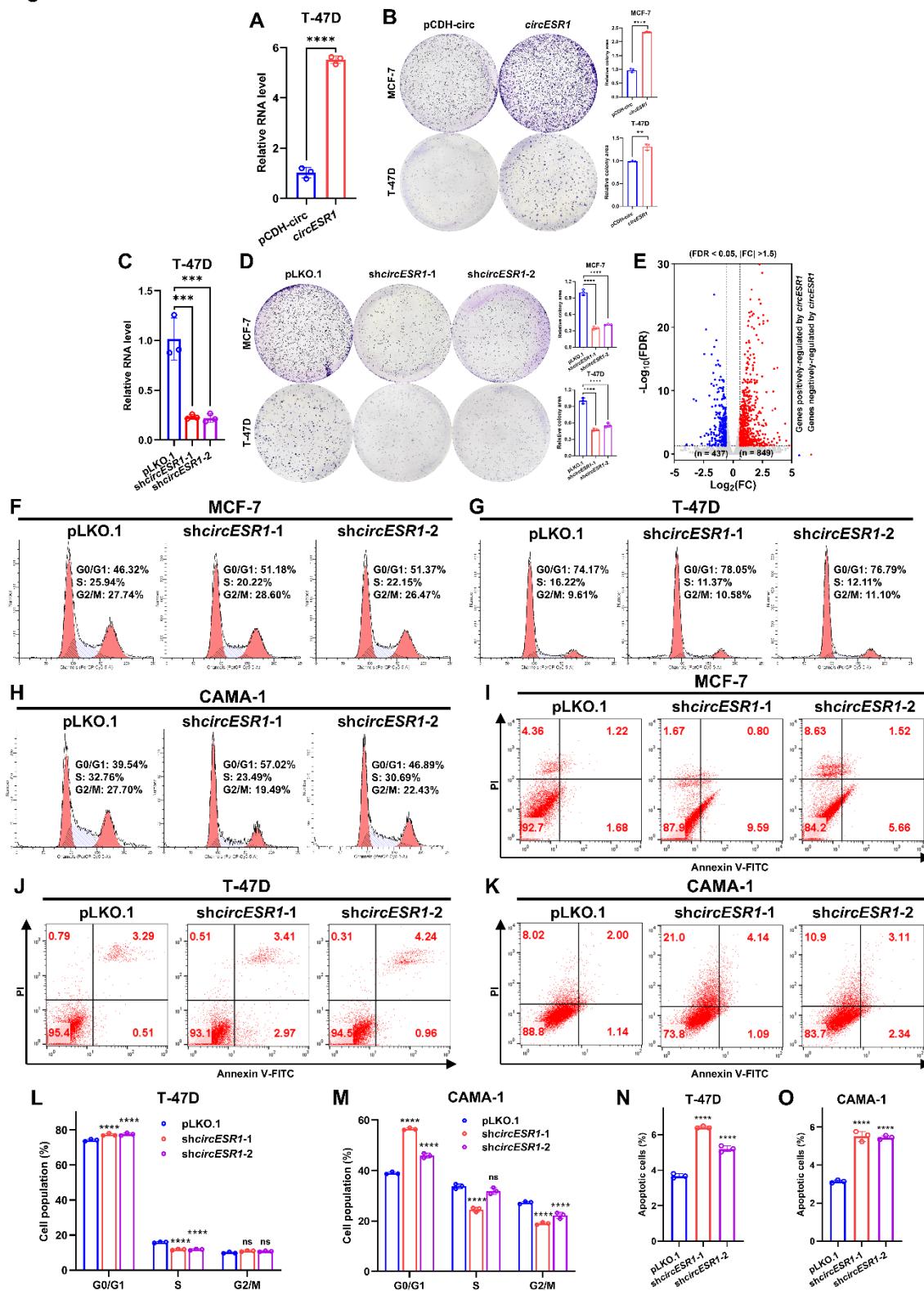
Pull-down probes	Sense Strand (5'-3')
scramble	TTCTCCGAACGTGTCACGTTCGAACGTGTC
<i>circESR1</i> -as-biotin	TATAGTCGTTATGTCCTGGCACCCCTTCG


21

22 **Table S9** Sequences of Northern probes

Northern probes	Sense Strand (5'-3')
<i>circESR1</i> -as-DIG	TATAGTCGTTATGTCCTGGCACCCCTTCG
<i>ESR1</i> mRNA-DIG	GGATCTCTAGCCAGGCACATTCTAGAAGGT

23


Figure S1

25 Figure S1 *Has_circ_0078310*, i.e. *circESR1*, is screened as a circRNA with specific
26 expression in ER+ BC. (A) Flowchart revealing the screening of 2,475 parental genes of
27 5,331 circRNAs against 13 genes in the ER α pathway. (B) Matrix of 13 human genes
28 known to function in ER signaling. Genes highlighted in red are those demonstrated to
29 produce circRNAs. (C) Detailed annotations of four circRNAs verified to be expressed in
30 MCF-7 cells. (D-E) The annotated parental genes in the CircBase database were two
31 circRNAs of *ESR1*, *hsa_circ_0078309* and *hsa_circ_0078310*. The images were drawn
32 using circPrimer 2.0 software. (F) The relative expression level of four circRNAs in six
33 breast epithelial and carcinoma cells (MCF-10A, HMEC-hTERT, MCF-7, T-47D, MDA-
34 MB-231 and SUM159PT) analyzed by qRT-PCR, and the log₂FC values displayed in a
35 heatmap. (G-H) Quantification of *circESR1* copy numbers in MCF-7 and T-47D cells by
36 digital (d)PCR. Highlighted green dots represented the detected small holes. (I) Northern
37 blot analysis of *circESR1* in human MCF-7 cells with or without RNase R treatment. The
38 hybridization probe against the short back-splicing junction of *circESR1* was shown
39 (left). The hybridization probe against *ESR1* mRNA (binding to the sequences that do not
40 overlap with *circESR1*) and against short back-splicing junction of *circESR1* was shown
41 (right). *ESR1* mRNA served as a control for the effect of RNase R, which digests linear
42 RNAs. (J) The curve of polysome profiling in MCF-7 cells. LMW, low molecular weight
43 fraction; HMW, high molecular weight fraction. (K) The relative expression of *circESR1*
44 in either LMW or HMW in MCF-7 cells analyzed by qRT-PCR. *GAPDH* mRNA was a

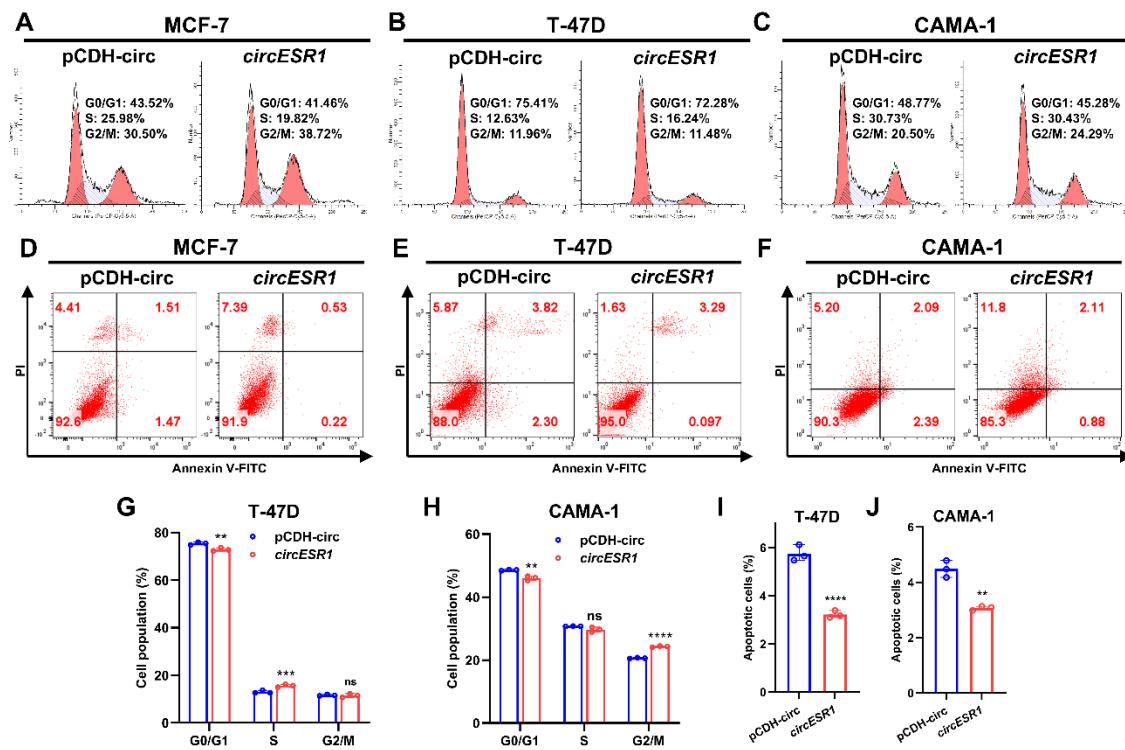
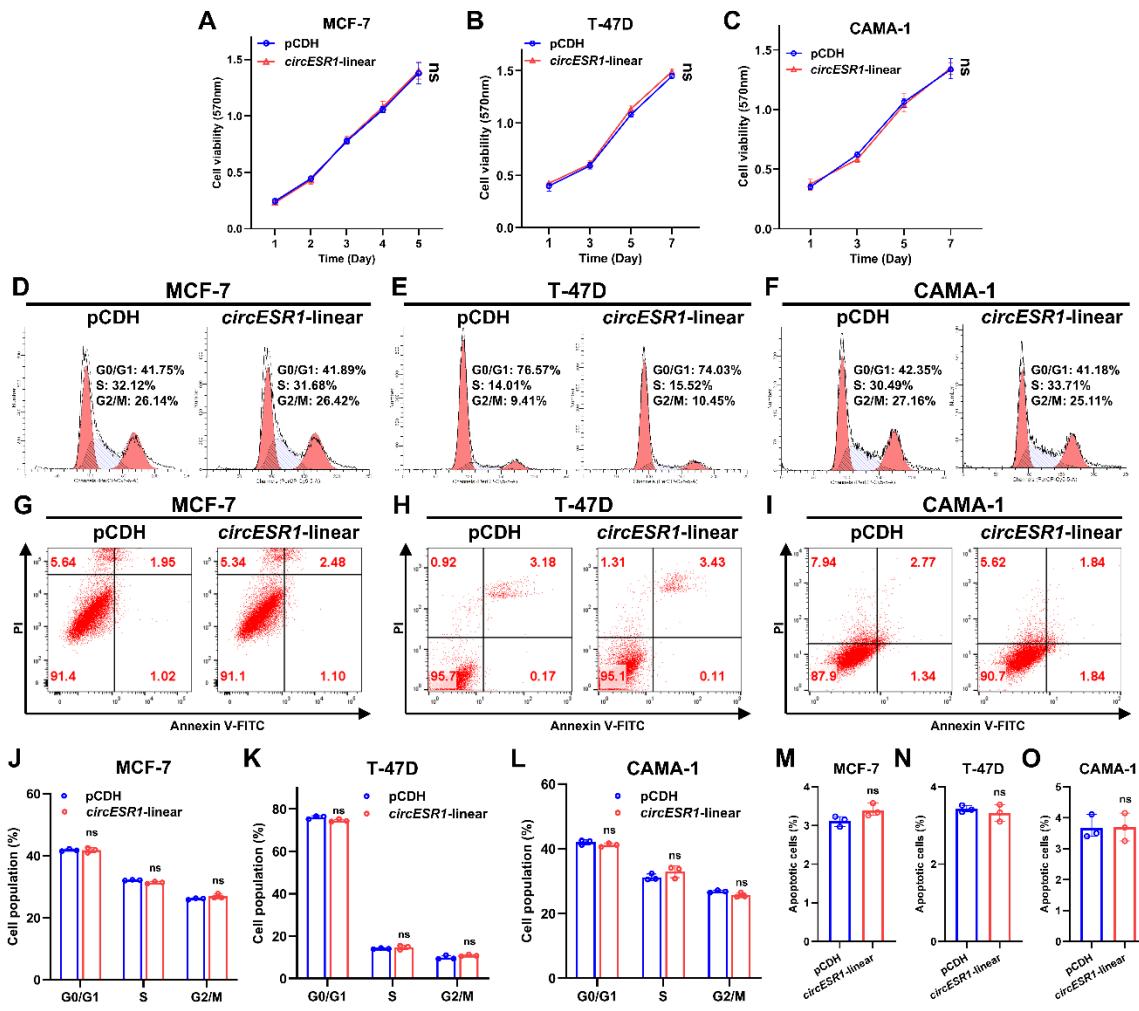

45 positive control, while *circHIPK3* was a negative control. Data was shown as mean \pm
46 S.D. from three independent experiments. Unpaired two-tailed Student's *t* test (K). ns,
47 $P>0.05$; ****, $P<0.0001$.

Figure S2

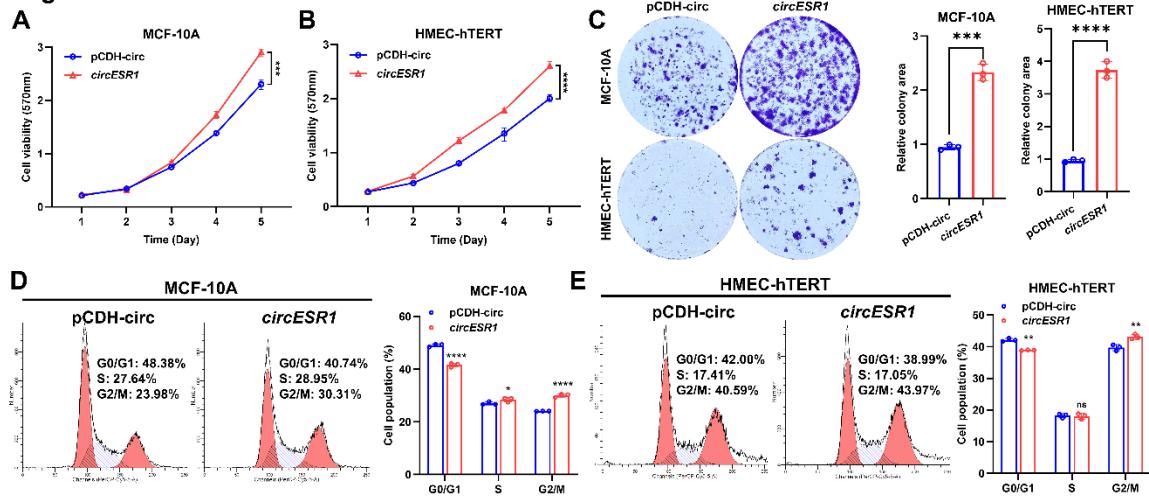
49 Figure S2 *CircESR1* promotes cell cycle transition and reduces cell apoptosis. (A) The
50 relative expression of *circESR1* in T-47D cells bearing control vector or vector expressing
51 *circESR1* analyzed by qRT-PCR. (B) Cell viability in MCF-7 and T-47D cells bearing
52 control vector or vector expressing *circESR1* determined by colony formation assay. (C)
53 The relative expression of *circESR1* in T-47D cells bearing control or *circESR1* shRNAs
54 analyzed by qRT-PCR. (D) Cell viability in MCF-7, and T-47D cells bearing control or
55 *circESR1* shRNAs determined by colony formation assays. (E) Genes that are positively
56 and negatively regulated by *circESR1* are shown by volcano plot (FDR < 0.05, |FC| >
57 1.5). (F-H and L-M) Flow cytometry showed the cell cycle distribution of ER+ BC cells
58 bearing control or *circESR1* shRNAs. (I-K and N-O) Flow cytometry showed total
59 proportion of cell apoptosis (Annexin V-FITC+) in ER+BC cells bearing control or
60 *circESR1* shRNAs. Data was shown as mean \pm S.D. from three independent experiments.
61 Unpaired two-tailed Student's *t* test (A-B) and one-way ANOVA followed by Tukey's
62 multiple comparisons test (C-D, L-O). ns, $P > 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****,
63 $P < 0.0001$.


Figure S3

64

65 Figure S3 *CircESR1* promotes cell cycle transition and reduces cell apoptosis. (A-C and
 66 G-H) Flow cytometry showed the cell cycle distribution of ER+ BC cells bearing control
 67 vector or vector expressing *circESR1*. (D-F and I-J) Flow cytometry showed total
 68 proportion of cell apoptosis (Annexin V-FITC+) in ER+ BC cells bearing control vector
 69 or vector expressing *circESR1*. Data was shown as mean \pm S.D. from three independent
 70 experiments. Unpaired two-tailed Student's *t* test (G-J). ns, $P>0.05$; **, $P<0.01$; ***,
 71 $P<0.001$; ****, $P<0.0001$.

Figure S4


72

73 Figure S4 *CircESR1* cognate linear sequences have no effect on cell cycle transition and
74 cell apoptosis. (A-C) Cell viability in ER+ BC cells bearing control vector or vector
75 expressing *circESR1* cognate linear sequences determined by MTT assay. (D-F and J-L)
76 Flow cytometry showed the cell cycle distribution of ER+ BC cells bearing control vector
77 or vector expressing *circESR1* cognate linear sequences. (G-I and M-O) Flow cytometry
78 showed total proportion of cell apoptosis (Annexin V-FITC+) in ER+ BC cells bearing
79 control vector or vector expressing *circESR1* cognate linear sequences. Data was shown

80 as mean \pm S.D. from three independent experiments. Unpaired two-tailed Student's *t* test

81 (J-O) and two-way ANOVA test (a-c). ns, $P>0.05$.

Figure S5

82

83 Figure S5 *CircESR1* promotes cell cycle transition in normal epithelial breast cells. (A-B)

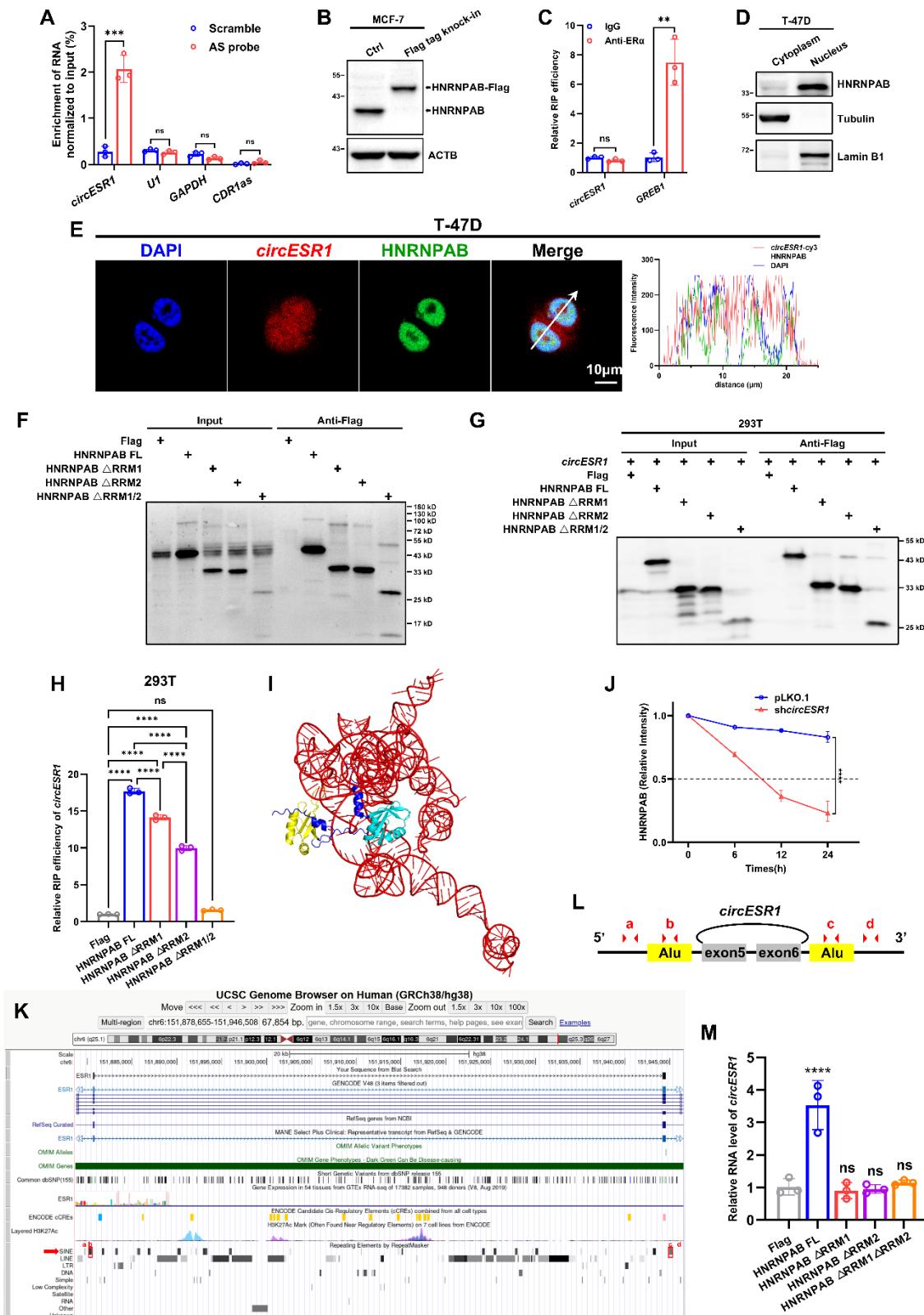
84 Cell viability in ER- mammary epithelial cells MCF-10A and HMEC-hTERT bearing

85 control vector or vector expressing *CircESR1* determined by MTT assay. (C) Cell viability

86 in MCF-10A and HMEC-hTERT cells bearing control vector or vector expressing

87 *CircESR1* determined by colony formation assay. (D-E) Flow cytometry showed the cell

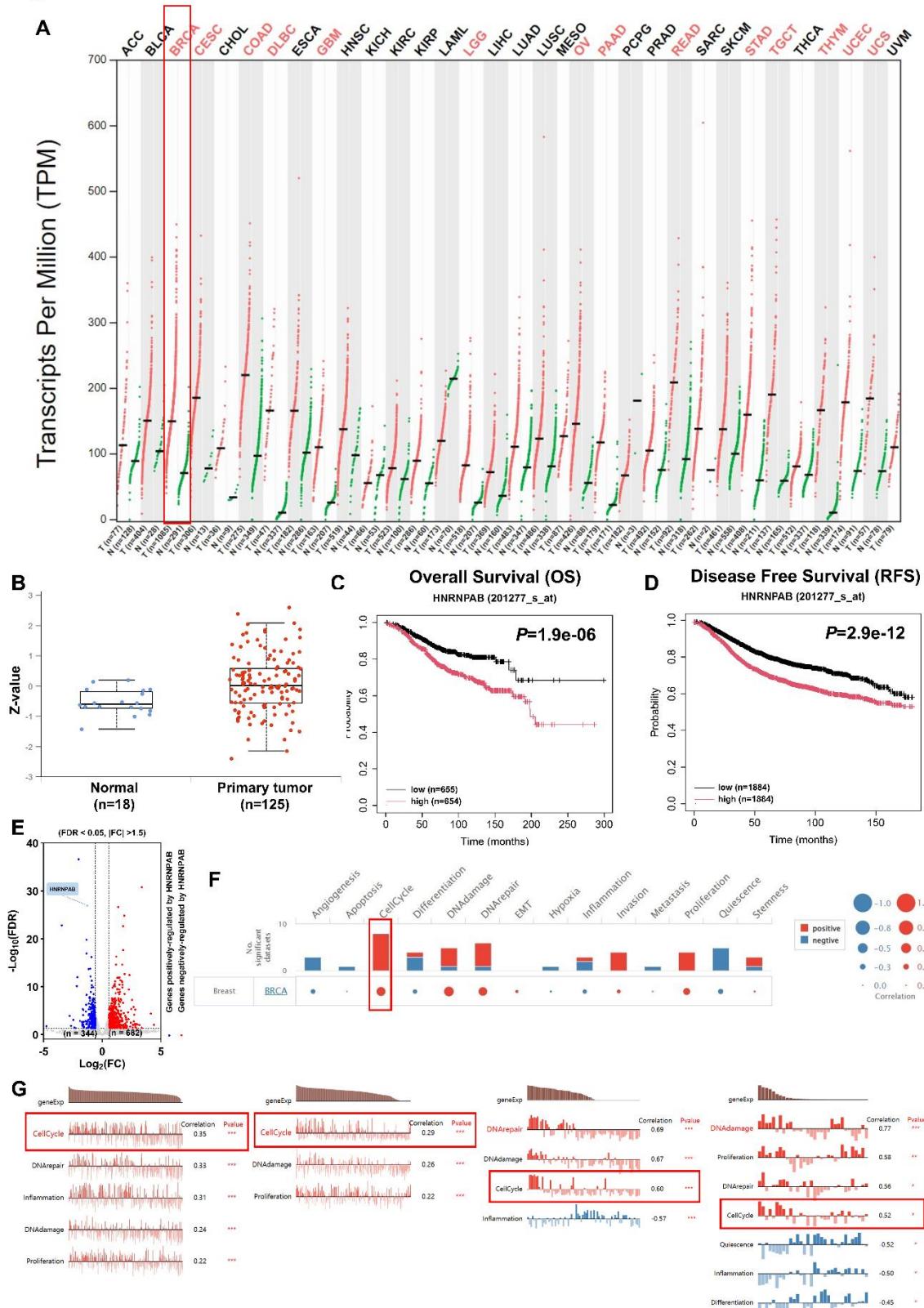
88 cycle distribution and total proportion of cell apoptosis (Annexin V-FITC+) in MCF-10A


89 and HMEC-hTERT cells bearing control vector or vector expressing *CircESR1*. Data was

90 shown as mean \pm S.D. from three independent experiments. Unpaired two-tailed

91 Student's *t* test (C-E) and two-way ANOVA test (A-B). ns, $P>0.05$; *, $P<0.05$; **,

92 $P<0.01$; ***, $P<0.001$; ****, $P<0.0001$.


Figure S6

94 Figure S6 *CircESR1* interacts with HNRNPAB and HNRNPAB promoted the biogenesis
95 of *circESR1*. (A) Efficiency of enriching *circESR1* with AS probe was evaluated in RNA
96 pull-down experiment. *U1*, *GAPDH* mRNA and *CDR1as* as negative control. (B)
97 Immunoblot assessment of HNRNPAB expression in MCF-7 cells or cells with CRISPR
98 knock-in 3xFlag tag in the N-terminal of HNRNPAB. (C) The relative expression of
99 *circESR1* and *GREB1* mRNA using IgG and anti-ER α antibodies to perform RIP assay in
100 MCF-7 cells. (D) Detected the cellular subcellular localization of HNRNPAB after
101 nuclear and cytoplasmic separation of T-47D cells. (E) Immunofluorescence analysis
102 localization of DAPI (blue), *circESR1* AS probe labeled with cy3 (red) and anti-
103 HNRNPAB antibody (green) in T-47D cells. Scale bars, 10 μ m. (F) Immunoblot detected
104 RIP results after transiently transferring different truncated mutation vectors of
105 HNRNPAB using anti-Flag antibodies in MCF-7 cells. (G-H) Immunoblot and qRT-PCR
106 detected RIP results after transiently transfecting different truncated mutation vectors of
107 HNRNPAB using anti-Flag antibodies into 293T cells. (I) The predicted 3D model of
108 *circESR1* (red) and HNRNPAB (blue) by HDOCK software. Highlighted yellow or cyan
109 represented the two RRM domains of HNRNPAB. (J) The relative intensity analysis of
110 the immunoblot results in Fig. 3o using Image J software. (K) The UCSC Genome
111 Browser searched for Alu sequences flanking *circESR1* based on genomic location.
112 Highlighted red represented the two SINE (short interspersed element) sequences. (L)
113 The schematic of Alu sequence on both sides of the upstream and downstream of

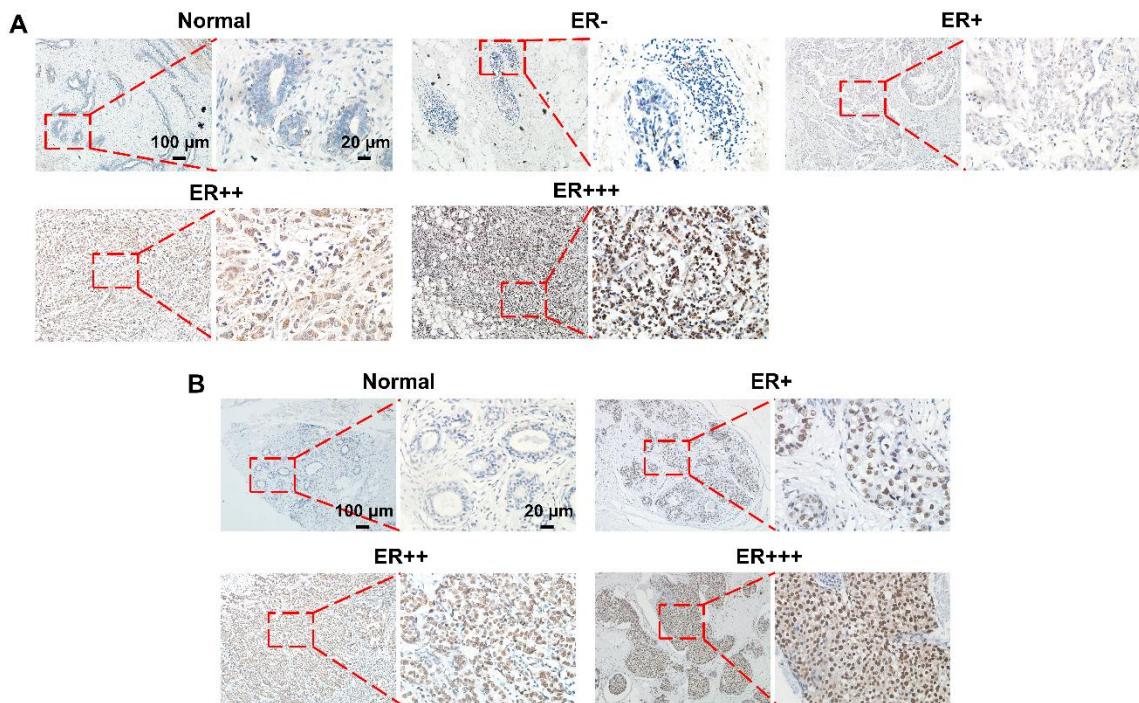

114 *circESR1* in *ESR1* pre-mRNA (b and c regions). The regions outside of Alu sequence on
115 both sides (a and d regions) were chosen as negative controls. (M) The relative
116 expression of *circESR1* in MCF-7 cells bearing Flag vector or different truncated
117 mutation vectors of HNRNPAB analyzed by qRT-PCR. Data was shown as mean \pm S.D.
118 from three independent experiments. Unpaired two-tailed Student's *t* test (A, C) and one-
119 way ANOVA followed by Tukey's multiple comparisons test (H, M) and two-way
120 ANOVA test (J). ns, $P>0.05$; **, $P<0.01$; ***, $P<0.001$; ****, $P<0.0001$.

Figure S7

122 Figure S7 Analysis of HNRNPAB expression by bioinformatics. (A) GEPIA2 database
123 analysis of *HNRNPAB* mRNA expression levels in 33 different types of cancer compared
124 to adjacent tissues. The cancer names are marked in red, indicating significant differences
125 in *HNRNPAB* mRNA among this cancer type. (B) Expression level of *HNRNPAB* in
126 normal breast tissue (n=18) and primary BC tissue (n=125). (C-D) KM Plotter analyzed
127 the difference in OS and PFS of ER+ BC patients with different levels of *HNRNPAB*
128 expression. *P* value was determined by Pearson correlation analysis. (E) Genes that are
129 positively and negatively regulated by HNRNPAB are shown by volcano plot (FDR <
130 0.05, |FC| > 1.5). (F) The CancerSEA database had analyzed the different functional
131 correlations of *HNRNPAB* in 18 different cancer types at the single cell level, and the
132 image analysis showed the correlation with the functional status of BC. (G) GSE77308,
133 GSE75688, GSE75367, GSE86978 dataset analyzed the functionality of HNRNPAB and
134 only displayed functions with correlation absolute values more than 0.2 and significant *P*-
135 values. *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001.

Figure S8

136

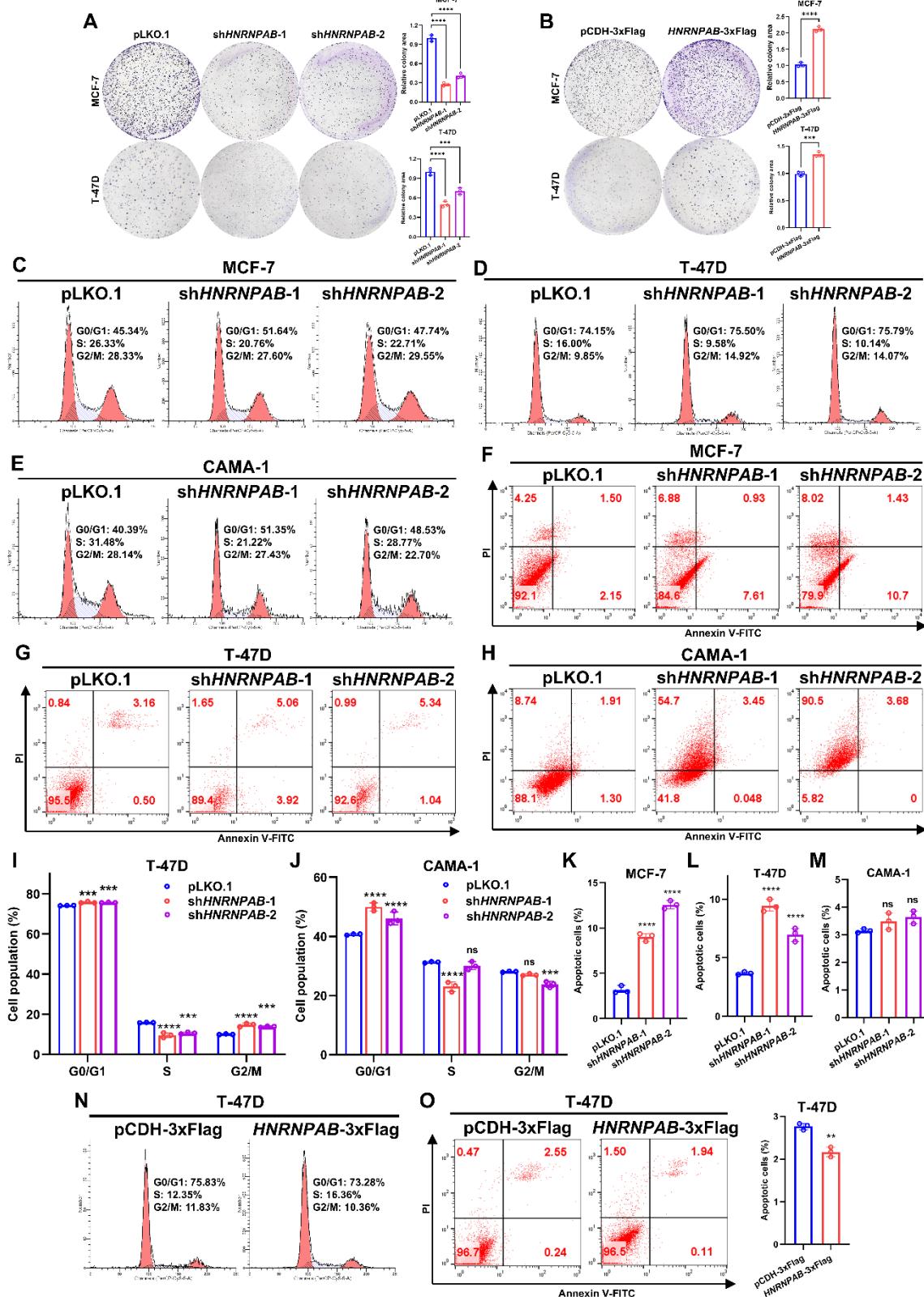
137 Figure S8 Examination of *circESR1* and HNRNPAB expression in clinical samples. (A)

138 *In situ* hybridization staining of *circESR1* was performed on the tissue sections of clinical

139 BC patients with normal and different levels of ER protein expression, and the staining of

140 *circESR1* was observed by Olympus inverted fluorescence microscope IX73. The left

141 scale bar of each group is 100 μm, and the right scale bar is 20 μm. (B) IHC staining of


142 HNRNPAB protein was performed on the tissue sections of clinical BC patients with

143 normal and different levels of ER protein expression, and the expression of HNRNPAB

144 protein was observed by Olympus inverted fluorescence microscope IX73. The left scale

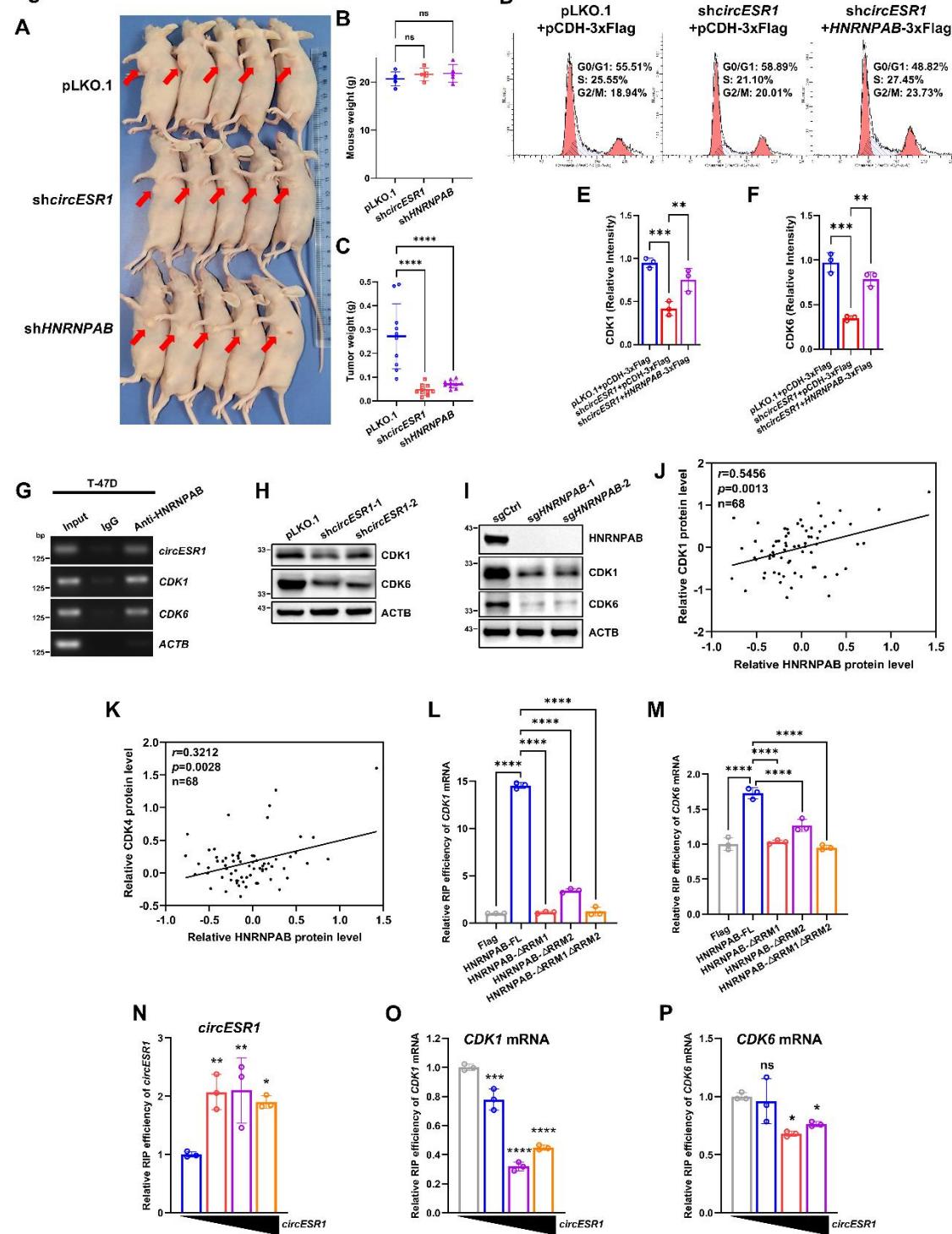
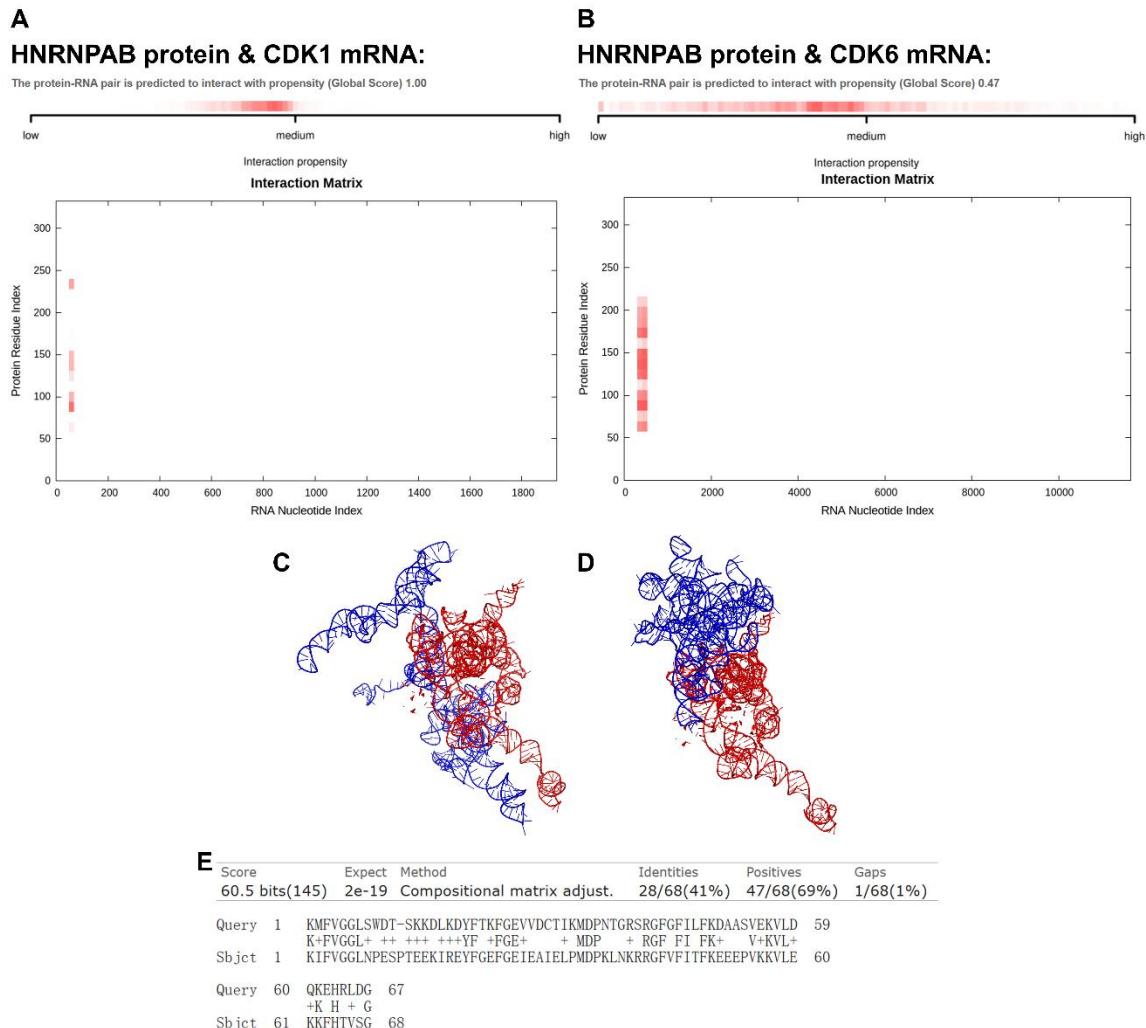

145 bar of each group is 100 μm, and the right scale bar is 20 μm.

Figure S9

147 Figure S9 Analysis of cell proliferation, cell cycle and cell apoptosis upon the
148 manipulation of HNRNPAB expression. (A-B) Cell viability in MCF-7 and T-47D cells
149 bearing control or *HNRNPAB* shRNAs (A) or vector expressing *HNRNPAB* (B)
150 determined by colony formation assay. (C-E and I-J) Flow cytometry showed the cell
151 cycle distribution of ER+ BC cells bearing control or *HNRNPAB* shRNAs. (F-H and K-
152 M) Flow cytometry showed total proportion of cell apoptosis (Annexin V-FITC+) in ER+
153 BC cells bearing control or *HNRNPAB* shRNAs. (N-O) Flow cytometry showed the cell
154 cycle distribution and total proportion of cell apoptosis (Annexin V-FITC+) in T-47D
155 cells bearing control vector or vector expressing HNRNPAB. Data was shown as mean ±
156 S.D. from three independent experiments. Unpaired two-tailed Student's *t* test (B, O) and
157 one-way ANOVA followed by Tukey's multiple comparisons test (A, I-M). ns, $P>0.05$;
158 **, $P<0.01$; ***, $P<0.001$; ****, $P<0.0001$.

Figure S10


159

160 Figure S10 HNRNPAB promotes cell cycle transition by interacting with *CDK1* and

161 *CDK6* mRNA. (A-C) Female BALB/c nude mice injected with 2×10^6 MCF-7 control or

162 knockdown *circESR1* or knockdown *HNRNPAB* cells (n=5/group). On the 48th day, when
163 collecting tumors from mice, weigh the live mice and the final weight of the isolated
164 tumors. (D) Flow cytometry showed the cell cycle distribution of MCF-7 cells bearing
165 control or *circESR1* shRNAs in the presence or absence of vector expressing HNRNPAB.
166 (E-F) The relative intensity analysis of the immunoblot results in Figure 4I using Image J
167 software. (G) The mRNA enriched by HNRNPAB in RIP-seq was verified in T-47D cells,
168 and was displayed by agarose gel electrophoresis after analyzed by qRT-PCR. (H-I)
169 Immunoblot assessed the expression of CDK1 and CDK6 proteins after *circESR1*
170 depletion or *HNRNPAB* knockout in MCF-7 cells. (J-K) CPTAC database analyzed
171 relative HNRNPAB and CDK1 or CDK4 protein levels in 68 ER+ BC patients. (L-M)
172 293T cells were transiently transfected with HNRNPAB plasmids with different
173 truncations and *circESR1* plasmid. RIP assay by use of anti-Flag antibody and the relative
174 expression of *CDK1* and *CDK6* mRNA analyzed by qRT-PCR. (N-P) 293T cells co-
175 transfected with the RRM2 domain deletion of HNRNPAB (15 μ g) and gradient amounts
176 of *circESR1* (1, 5, 9, 13 μ g) were used for RIP assay by use of anti-Flag antibody, then
177 the relative expression of *circESR1* and *CDK1*, *CDK6* mRNAs analyzed by qRT-PCR.
178 Data was shown as mean \pm S.D. from three independent experiments. One-way ANOVA
179 followed by Tukey's multiple comparisons test (B-C, E-F, L-P). ns, $P>0.05$; *, $P<0.05$;
180 **, $P<0.01$; ***, $P<0.001$; ****, $P<0.0001$.

Figure S11

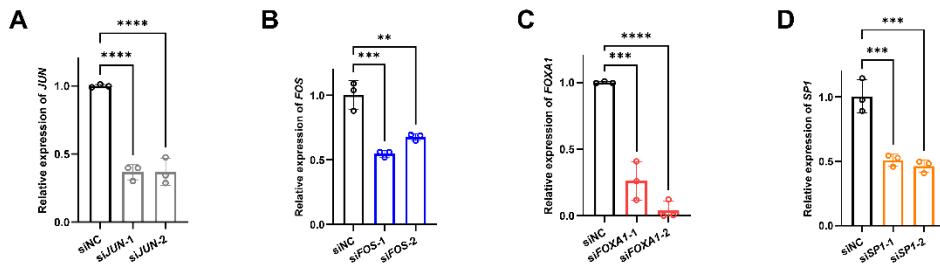
181

182 Figure S11 Molecular docking analysis of HNRNPAB and *CDK1* or *CDK6* mRNAs. (A)

183 The interaction propensities between the amino acid sequence of HNRNPAB and *CDK1*

184 mRNA were predicted using the catRAPID fragments tool. The horizontal axis in the

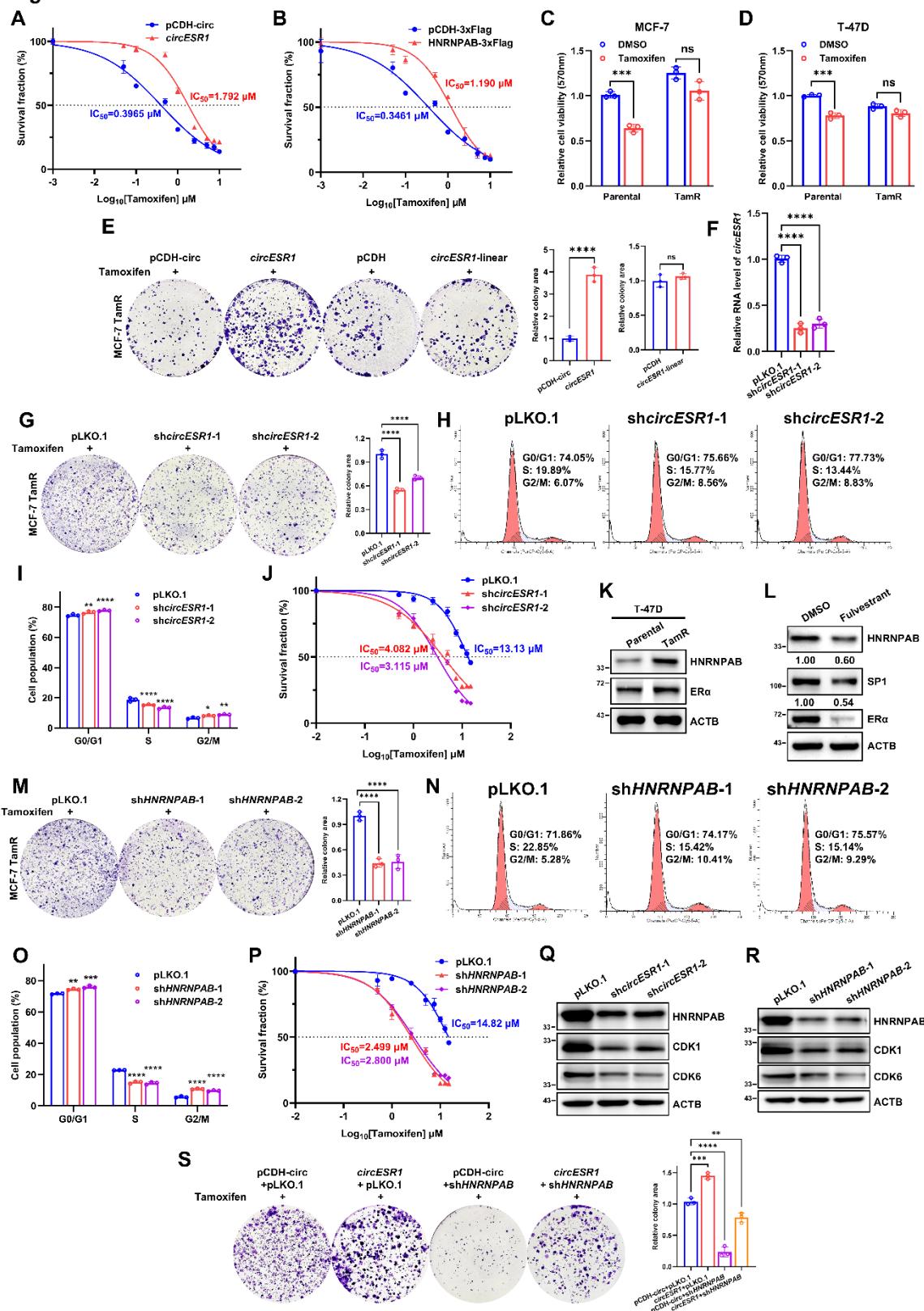
185 figure below corresponds to the *CDK1* mRNA sequence, and the vertical axis


186 corresponds to the HNRNPAB amino acid sequence. (B) The predicted interaction

187 propensities between the amino acid sequence of HNRNPAB and *CDK6* mRNA using the

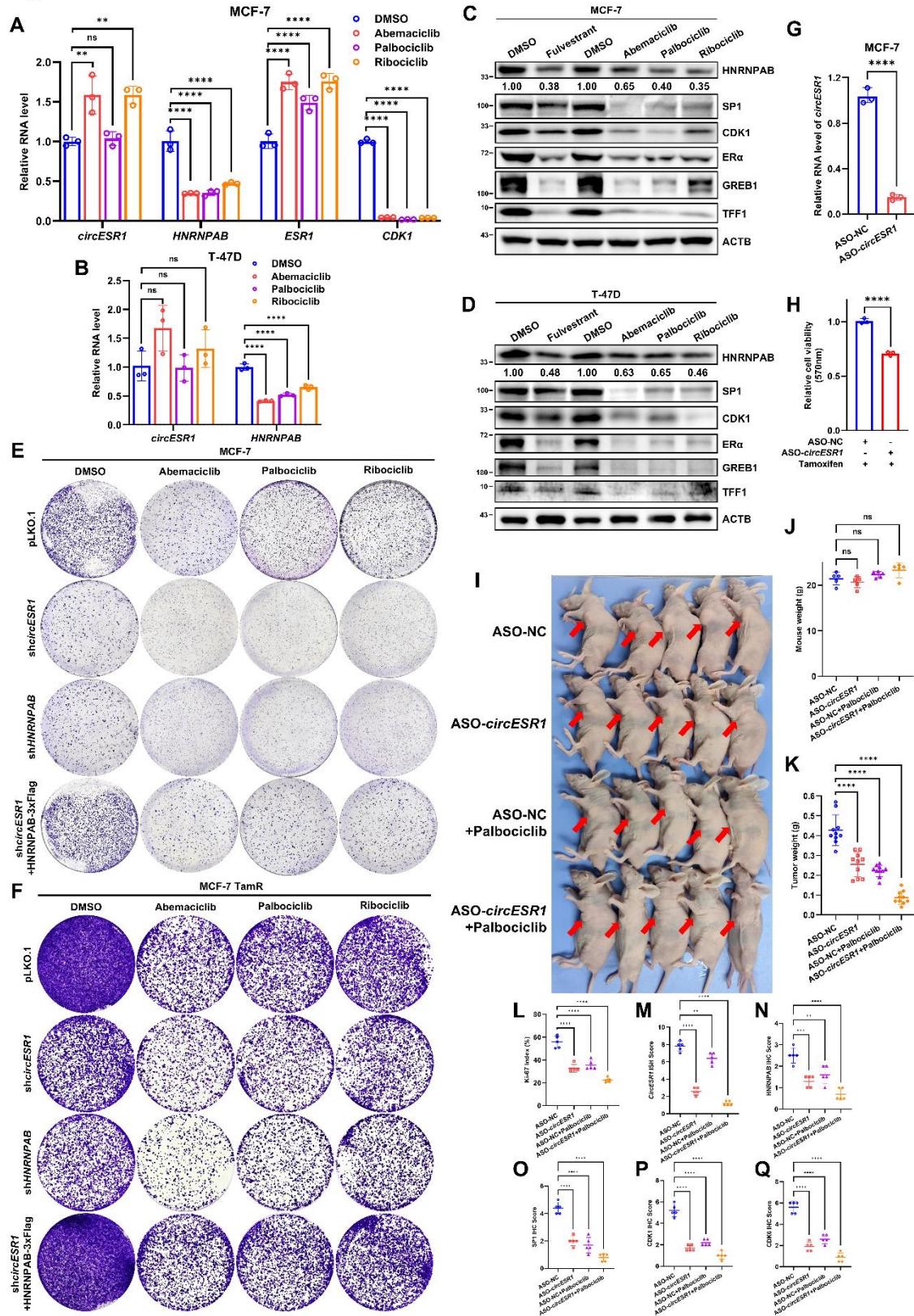
188 catRAPID fragments tool. The horizontal axis in the figure below corresponds to the

189 *CDK6* mRNA sequence, and the vertical axis corresponds to the HNRNPAB amino acid
190 sequence. (C-D) The predicted 3D model of *circESR1* and HNRNPAB complex (red)
191 with *CDK1* or *CDK6* mRNAs (blue) by HDOCK software. Highlighted red represented
192 the whole structure of previous *circESR1* and HNRNPAB complex (Figure S6I). (E)
193 Alignment of the two predicted RRM domain of HNRNPAB using NCBI blast tool.


Figure S12

194

195 Figure S12 Estrogen promotes HNRNPAB expression via SP1. (A-D) MCF-7 cells were
196 transfected with pGL3 basic reporter vector containing HNRNPAB promoter, pRL-TK
197 reporter control vector containing luciferase activity, as well as siRNA control or different
198 siRNA sequences of 4 transcription factors (JUN, FOS, FOXA1 and SP1), then the
199 relative expression of each transcription factors analyzed by qRT-PCR. Data was shown
200 as mean \pm S.D. from three independent experiments. One-way ANOVA followed by
201 Tukey's multiple comparisons test (A-D). **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$.


Figure S13

203 Figure S13 *CircESR1* promotes antiestrogen resistance via HNRNPAB. (A-B) MCF-7
204 cells bearing control vector or vector expressing *circESR1* or *HNRNPAB* were treated
205 with different concentration gradients of tamoxifen for 7 days. The drug killing curve of
206 the cells was detected by MTT assay. (C-D) Cell viability in MCF-7 and T-47D parental
207 and tamoxifen resistant (TamR) cells treated with 1 μ M tamoxifen or DMSO vehicle for
208 7 days determined by MTT assay. (E) Cell viability in MCF-7 TamR cells bearing control
209 vector or vector expressing *circESR1* or cognate linear sequences determined by colony
210 formation assay. (F) The relative expression of *circESR1* and *ESR1* mRNA in MCF-7
211 TamR cells bearing control or *circESR1* shRNAs analyzed by qRT-PCR. (G) Cell
212 viability in MCF-7 TamR cells bearing control or *circESR1* shRNAs determined by
213 colony formation assays. (H-I) Flow cytometry showed the cell cycle distribution of
214 MCF-7 TamR cells bearing control or *circESR1* shRNAs. (J) MCF-7 cells bearing control
215 or *circESR1* shRNAs were treated with different concentration gradients of tamoxifen for
216 7 days. The drug killing curve of the cells detected by MTT assay. (K) Immunoblot
217 assessed the expression of HNRNPAB and ER α proteins in T-47D parental and TamR
218 cells. (L) Immunoblot assessed the expression of HNRNPAB, SP1 and ER α proteins in
219 MCF-7 TamR cells treated with DMSO or 10 mM fulvestrant for 48 h. (M) Cell viability
220 in MCF-7 TamR cells bearing control or *HNRNPAB* shRNAs determined by colony
221 formation assay. (N-O) Flow cytometry showed the cell cycle distribution of MCF-7
222 TamR cells bearing control or *HNRNPAB* shRNAs. (P) MCF-7 cells bearing control or

223 *HNRNPAB* shRNAs treated with different concentration gradients of tamoxifen for 7
224 days. The drug killing curve of the cells detected by MTT assay. (Q-R) Immunoblot
225 assessed the expression of *HNRNPAB*, CDK1 and CDK6 proteins after *circESR1* or
226 *HNRNPAB* depletion in MCF-7 TamR cells. (S) Cell viability in MCF-7 TamR cells
227 bearing control vector or vector expressing *circESR1* in the absence or presence of
228 *HNRNPAB* shRNA with 1 μ M tamoxifen treatment determined by colony formation
229 assay. Data was shown as mean \pm S.D. from three independent experiments. Unpaired
230 two-tailed Student's *t* test (C-E) and one-way ANOVA followed by Tukey's multiple
231 comparisons test (F-G, I, M, O, S) and two-way ANOVA test (A-B, J, P). ns, $P>0.05$; *,
232 $P<0.05$; **, $P<0.01$; ***, $P<0.001$; ****, $P<0.0001$.

Figure S14

234 Figure S14 Combined treatment of antiestrogen-resistant ER+ BC with ASO targeting
235 *circESR1* and CDK4/6i. (A) The relative expression of *circESR1* and *HNRNPAB*, *ESR1*,
236 *CDK1* mRNAs after treating 1 μ M abemaciclib or 2 μ M palbociclib or 10 μ M ribociclib
237 in MCF-7 cells for 48 h analyzed by qRT-PCR. (B) The relative expression of *circESR1*
238 and *HNRNPAB* mRNA after treating 1 μ M abemaciclib or 2 μ M palbociclib or 10 μ M
239 ribociclib in T-47D cells for 48 h analyzed by qRT-PCR. (C) Immunoblot assessment of
240 *HNRNPAB*, SP1, CDK1, ER α , GREB1 and TFF1 proteins after treating 1 μ M
241 abemaciclib or 2 μ M palbociclib or 10 μ M ribociclib in MCF-7 cells for 48 h. (D)
242 Immunoblot assessment of *HNRNPAB*, SP1, CDK1, ER α , GREB1 and TFF1 proteins
243 after treating 1 μ M abemaciclib or 2 μ M palbociclib or 10 μ M ribociclib in T-47D cells
244 for 48 h. (E) Cell viability in MCF-7 cells bearing control, or *circESR1* shRNA, or
245 *HNRNPAB* sgRNA, or *circESR1* shRNA and vector expressing *HNRNPAB* treating
246 DMSO or 1 μ M abemaciclib or 2 μ M palbociclib or 10 μ M ribociclib determined by
247 colony formation assays. (F) Cell viability in MCF-7 TamR cells bearing control, or
248 *circESR1* shRNA, or *HNRNPAB* shRNA determined by colony formation assays, or
249 *circESR1* shRNA and vector expressing *HNRNPAB* treating DMSO or 1 μ M abemaciclib
250 or 2 μ M palbociclib or 10 μ M ribociclib. (G) After transient transfection of control ASO
251 or ASO targeting *circESR1* in MCF-7 cells for 48 h, the relative expression of *circESR1*
252 analyzed by qRT-PCR. (H) Cell viability in MCF-7 TamR cells bearing ASO or ASO
253 targeting *circESR1* with treating 1 μ M tamoxifen determined by MTT assays. (I-K)

254 Female BALB/c nude mice injected with 1×10^6 MCF-7 TamR cells (n=5/group). On the
255 48th day, when collecting tumors from mice, weight of the live mice and isolated tumors
256 were measured. (L) Ki-67 staining in tumor sections of Figure 6K was assessed by H-
257 score, n=5. (M) *CircESR1* ISH score in tumor sections of Figure 6K, n=5. (N-Q) IHC
258 score of HNRNPAB, SP1, CDK1 and CDK6 in tumor sections of Figure 6K, n=5. Data
259 was shown as mean \pm S.D. from three independent experiments. Unpaired two-tailed
260 Student's *t* test (G-H) and one-way ANOVA followed by Tukey's multiple comparisons
261 test (A-B, J-K). ns, $P > 0.05$; **, $P < 0.01$; ****, $P < 0.0001$.