

Supporting materials

AMPK α 1 Deficiency in Macrophages Impairs Tendon Regeneration and Tendon Stem Cell Function via a TNF- α – FBP2 Signaling

1 **Methods**

2 *In vivo subcutaneously transplantation*

3 To evaluate the effect of *Fbp2* knockdown on the tendon regeneration, cells were
4 first treated with siRNA against *Fbp2* or negative control siRNA for 24 hours. Then,
5 TSPCs (1×10^6 cells) with treatment were seeded on sterilized scaffolds, and implanted
6 subcutaneously in the dorsum of athymic mice (6 – 8 weeks, BLAB/c nude mice) under
7 anesthesia. Implants from 8 weeks were retrieved and fixed with 4% paraformaldehyde.
8 Paraffin sections at a thickness of 4 μm were harvested, followed by HE, Masson's
9 trichrome, and immunofluorescence staining.

10 *Construction of a biomimetic parallel scaffold*

11 Building upon our previously established protocol for collagen self-assembly, the
12 biomimetic parallel scaffold was achieved through the following adapted procedure: A
13 solution of Type I tropocollagen (Corning, 3,88 mg/mL) was injected into a dialysis
14 bag (3500 Da), submerged in a phosphate buffer solution. Simultaneously, axial tensile
15 force was applied to both ends of the dialysis bag using mechanical apparatus, and
16 assembly was conducted at 37°C for 24 hours under constant temperature conditions.
17 The scaffolds underwent overnight freeze-drying after freezing and were subsequently
18 cross-linked for 4 hours under light-avoiding conditions using a cross-linking agent
19 containing 1 wt% 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in 80% ethanol.
20 Finally, they underwent three alternating washes with distilled water and a 1% glycine
21 solution, followed by freeze-drying and lyophilization for further use.

22 *Flow cytometry*

23 The mice were euthanized, and the harvested tendon was minced and digested
24 completely with 3 mg/mL collagenase type I (Thermo Fisher Scientific) and 4 mg/mL
25 dispase (Roche) at 37 °C for 1 h. After passing through a 70 μm strainer, the single-cell
26 suspensions were incubated with the appropriate cocktail of antibodies (CD45, CD11b,
27 F4/80, CD206, 1 $\mu\text{L}/\text{test}$) for 30 min at 4°C. Then, cells were washed two times with
28 PBS and resuspended in 500 μL of flow buffer for analysis.

29 *Macrophage phagocytosis*

30 Efferocytosis was assessed in macrophages with autologous apoptotic TSPCs and
31 evaluated through immunofluorescence staining. For the in vitro macrophage
32 phagocytosis assays using fluorescence microscopy, apoptotic TSPCs were pre-labeled
33 with PKH26. Subsequently, BMDMs were co-cultured with apoptotic TSPCs at the
34 ratio of 1:10 of BMDMs to apoptotic TSPCs for 1 hour. Macrophages were then
35 collected and washed three times with PBS, and fixed with 4% paraformaldehyde for
36 15 min to evaluate efferocytosis by microscopy.

37 *Enzyme-linked immunosorbent assay (ELISA)*

38 To measure IL-6, TNF- α , IL-4 and IL-10 levels in culture supernatants, BMDM
39 supernatants were collected, centrifuged at $500 \times g$ for 5 min to remove cell debris and
40 then assayed using the IL-6, TNF- α , IL-4 and IL-10 Mouse commercial ELISA Kit
41 (ExCell Bio, Inc., Jiangsu, China) according to the manufacturer's instructions.

42 *CFU-F assays*

43 For CFU-F assay, single-cell suspensions of TSPCs (1000 cells/well) for 12 – 14
44 days in growth medium and fixed with 4% paraformaldehyde. Then, 0.1% crystal violet
45 solution (Solarbio, Beijing, China) was used to stain the cells. Colonies of >50 cells
46 were defined as single colony unit, and the number of clusters was counted using Image
47 J 1.52a software.

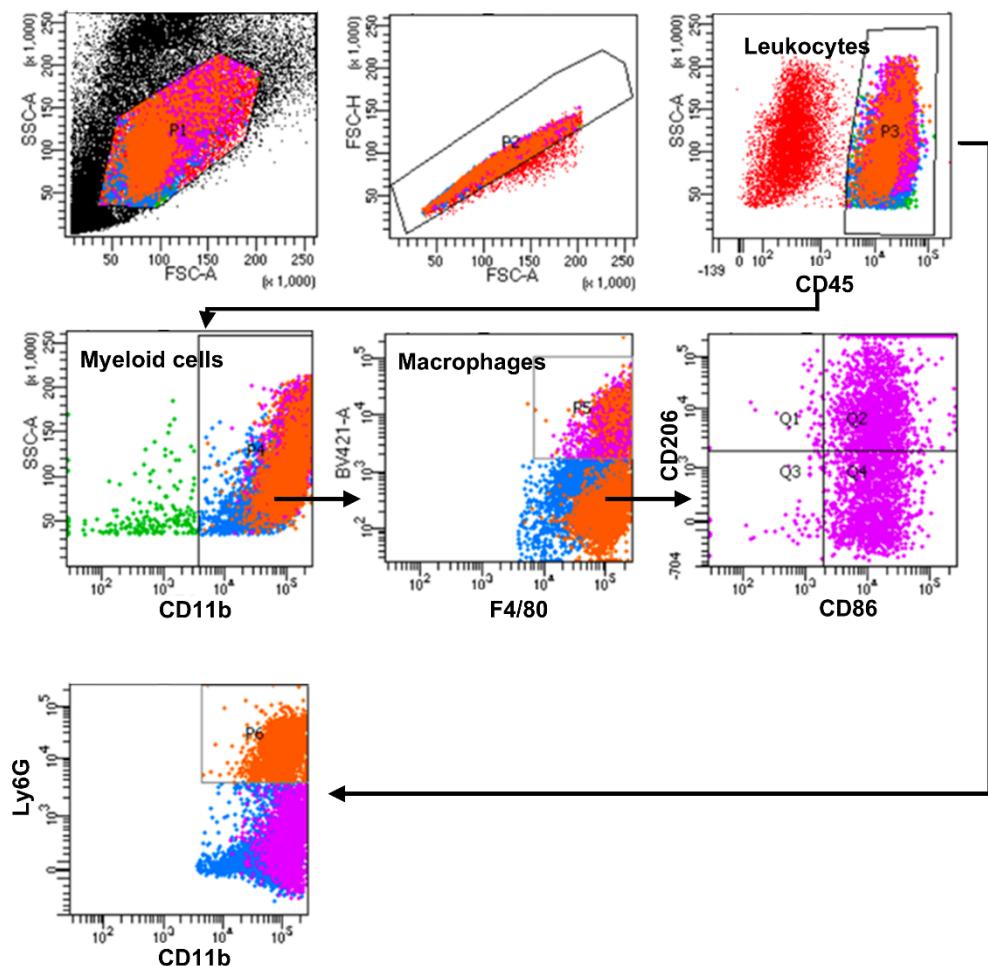
48 *Scratch assay*

49 A wound healing assay was also employed to assess the migration of TSPCs.
50 TSPCs were seeded in 6-well plates and cultured until confluent. A straight line was
51 scratched using a pipettor spear head in each well. The 6-well plate was washed twice
52 with PBS buffer to remove floating cells. At 0, 24 and 36 hours, scratch wound healing
53 was recorded using an inverted microscope, and the scratch width was measured by
54 Image J software for statistical analysis.

55 *Macroscopic evaluation of regenerated tendons.*

56 At 1- and 4-week postoperatively, mice were euthanized and the Achilles tendon
57 was fully exposed. Then the full-length tendon complexes including partial
58 gastrocnemius and calcaneus were harvested, and photographed using a camera (Nikon,
59 Japan).

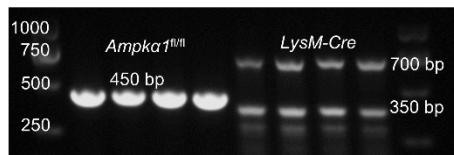
60 *ROS assay*

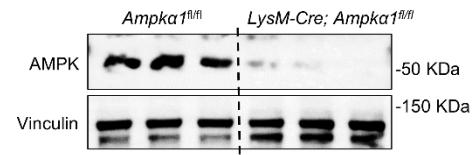

61 Mitochondrial ROS were measured using Mito SOX following the manufacturer's
62 instructions. First, the cells were washed with PBS, then cells were incubated in 5 μ M
63 Mito SOX Red solution (Yeasen, China) at 37 °C for 10 min. Finally, the red
64 fluorescence of cells was calculated by a flow cytometer (BD Accuri C6).

65 Cellular reactive oxygen species were tested by using DCFH-DA. A final working
66 concentration of 10 μ M DCFH-DA was added and incubated at 37 °C for 20 min. Then
67 the cells were washed by prewarmed PBS. Finally, the cells were checked with a laser-
68 scanning microscope (LSM 510, Zeiss, Germany).

69 *Assessment of F6P*

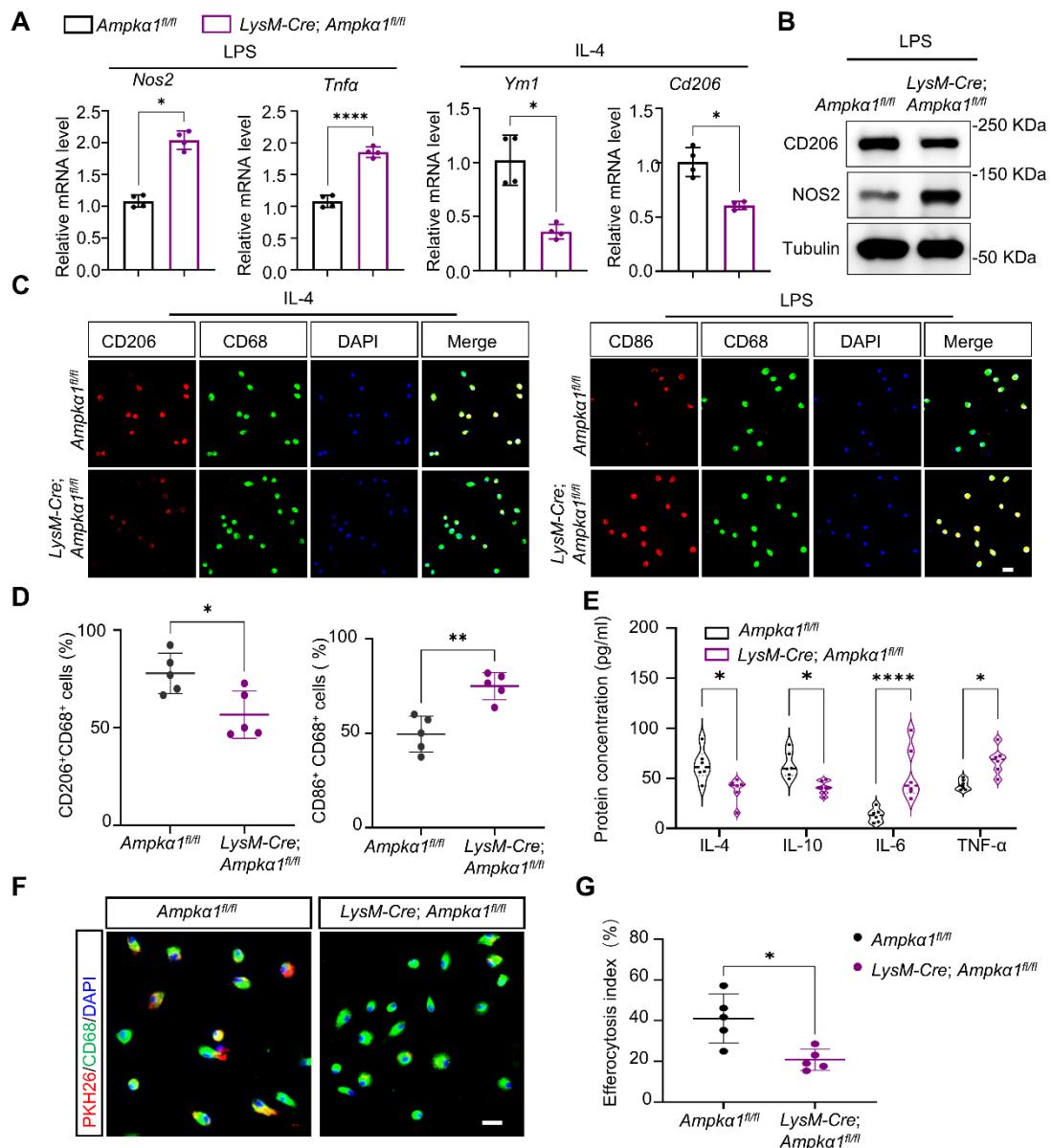
70 The content of F6P was measured by using the fructose-6-phosphate assay kit
71 (Beyotime, China) by examining the fluorescence intensity of Ex/Em (535/587 nm).


72 **Supplementary Figures**


73

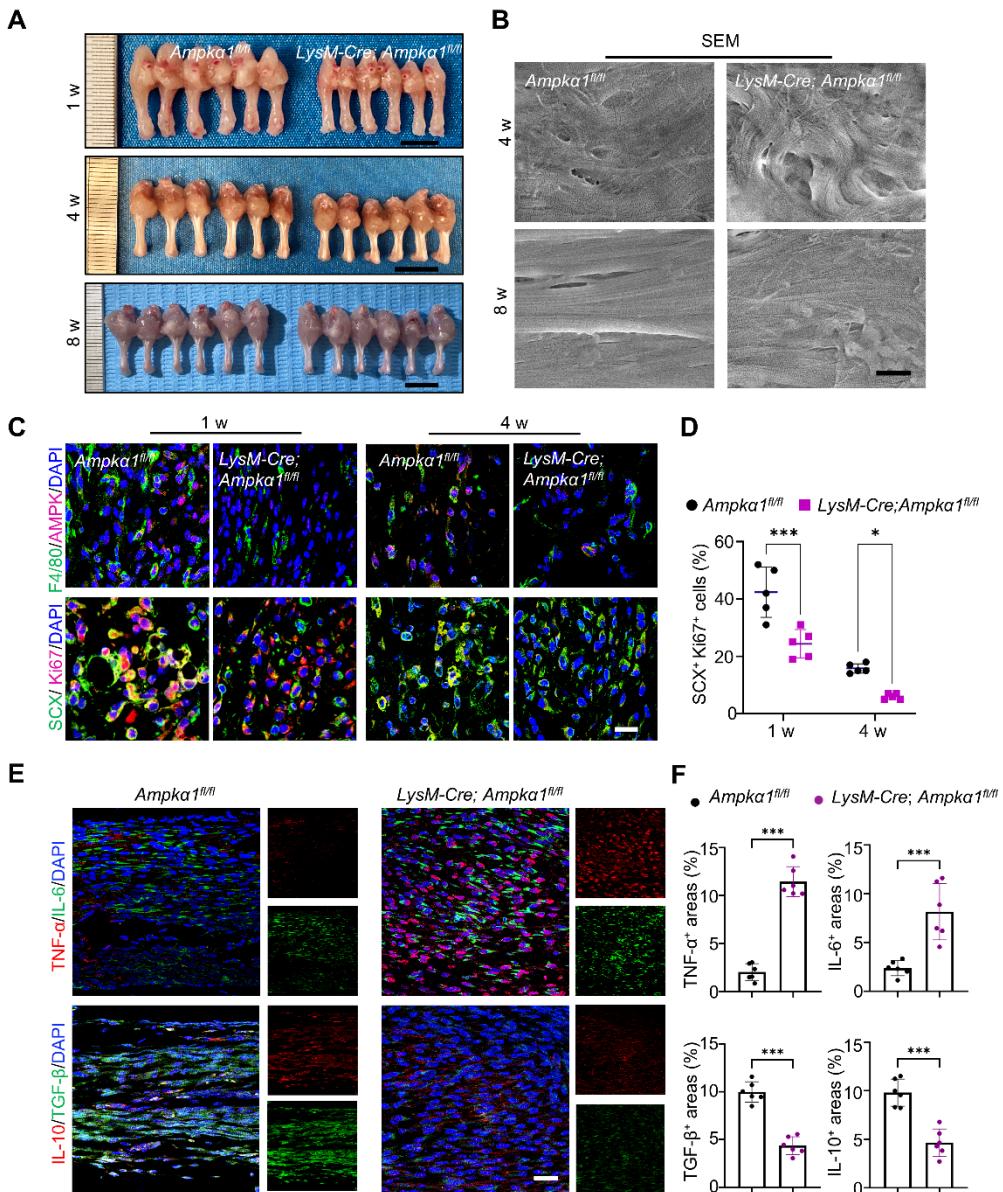
74 **Fig. S1** Gating strategy for flow cytometric analysis.

A



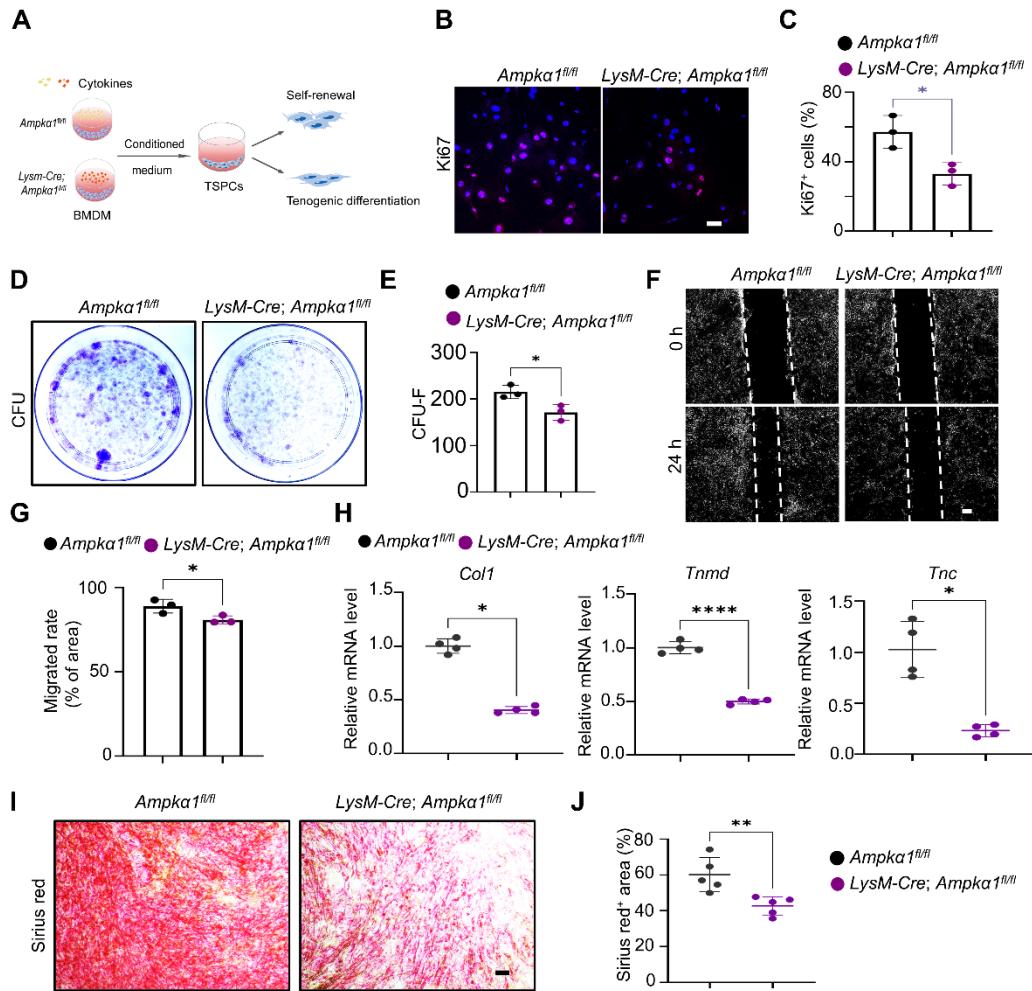
B

75


76 **Fig. S2** Validation and characterization of *LysM-Cre; Ampka1^{fl/fl}* mice. **(A)** Agarose gel
77 electrophoresis qRT-PCR products of *LysM-Cre; Ampka1^{fl/fl}* mice. **(B)** Western blotting
78 analysis of AMPK α 1 expression in bone marrow-derived macrophages (BMDMs) of
79 control and *LysM-Cre; Ampka1^{fl/fl}* mice.

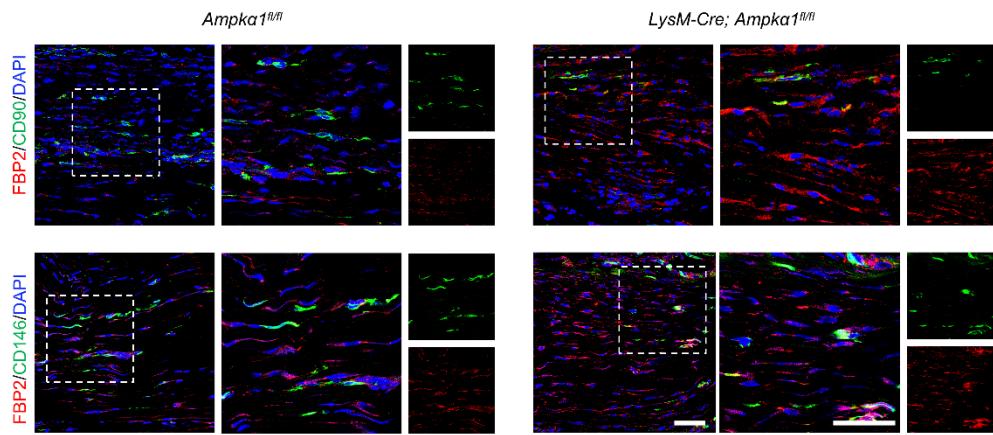
80

81 **Fig. S3** Knocking out *Ampka1* hinders macrophage transition to an anti-inflammatory
82 phenotype and its phagocytic function. **(A)** The expression of *Nos2*, *Tnf- α* , *Ym1* and
83 *Cd206* in the polarization of macrophages under different treatments by qRT-PCR
84 analysis ($n = 4$). **(B)** Western blotting analysis of CD206 and NOS expression in the
85 macrophages under lipopolysaccharide (LPS) treatments. **(C)** Immunofluorescent co-
86 staining of CD206 or CD86 (red) with CD68 (green) in the polarization of macrophages
87 under different treatments. Scale bars: 20 μ m. **(D)** Left: proportion of CD206 and CD68
88 double-positive cells among CD68-positive cells ($n = 5$). Right: proportion of NOS2

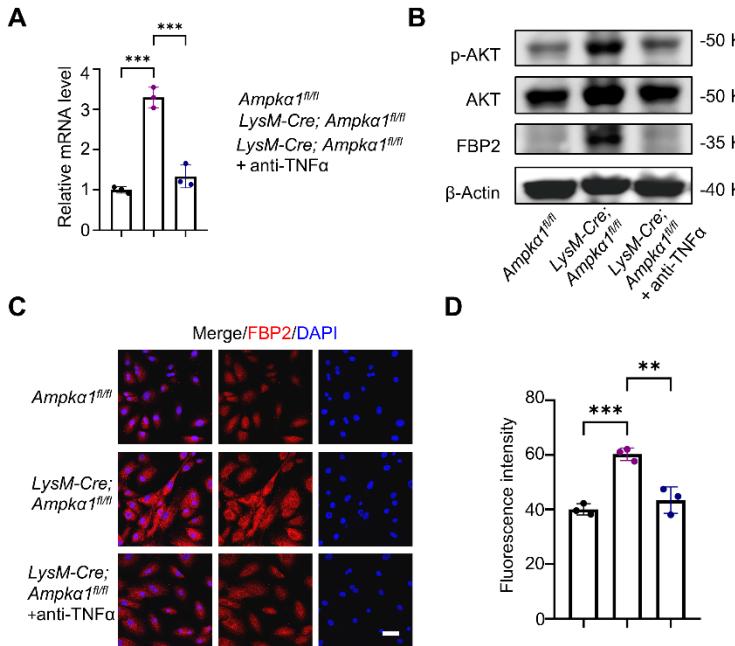

89 and CD68 double-positive cells among CD68-positive cells ($n = 5$). **(E)** Expression
90 levels of the cytokines IL-4, IL-10, IL-6, and TNF- α in macrophage supernatants of
91 control and *LysM-Cre; Ampk α 1^{fl/fl}* group were detected by ELISA. **(F)**
92 Immunofluorescent co-staining of PKH26 with CD68 in the macrophages ($n = 6$). Red:
93 PKH26 labeled apoptotic TSPCs; Green: CD68 labeled BMDMs. Scale bars: 20 μ m.
94 **(G)** Percent efferocytosis was quantified as the number of macrophages with engulfed
95 apoptotic cells as a percentage of total macrophages ($n = 5$). * $p < 0.05$, ** $p < 0.01$, and
96 *** $p < 0.0001$.

97

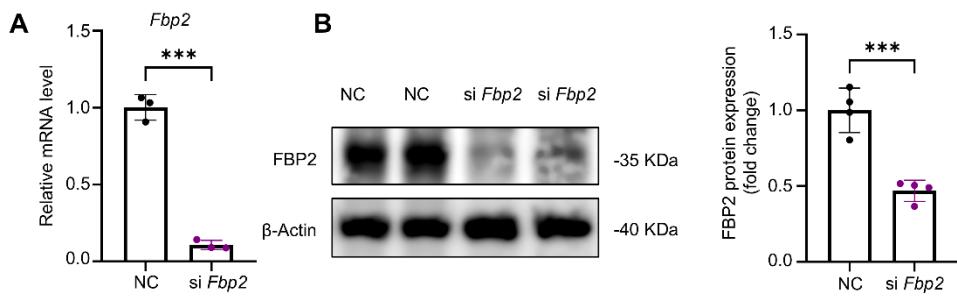
98 **Fig. S4** Macrophage AMPK α 1 deficiency impairs tendon regeneration and repair
99 capacity. **(A)** Gross view of tendons in newborn and adult mice at 1-, 4- and 8-week
100 after injury. Scale bars: 1 cm. **(B)** Representative scanning Electron Microscope (SEM)
101 images illustrating the microstructural characteristic of regenerated collagen fibers in
102 the control and *LysM-Cre; Ampka1^{fl/fl}* group at 4- and 8-week after injury. Scale bars:
103 1 μ m. **(C)** Immunofluorescent co-staining of AMPK (red) with F4/80 (green), Ki67
104 (red) with SCX (green) in the control and *LysM-Cre; Ampka1^{fl/fl}* group at 1- and 4-week
105 after injury. Scale bars: 20 μ m. **(D)** Proportion of SCX and Ki67 double-positive cells


106 among SCX-positive cells ($n = 5$). **(E)** Immunofluorescence staining results showed the
107 protein expression levels of TGF- β , IL-10, IL-6, and TNF- α of *LysM-Cre; Ampk $\alpha 1^{fl/fl}$*
108 group and control group. Scale bars: 50 μ m. **(F)** Quantification analysis of p-
109 AKT $^+$ SCX $^+$ -positive cells and p-AKT $^+$ CD146 $^+$ -positive cells ($n = 6$). * $p < 0.05$, and
110 *** $p < 0.001$.

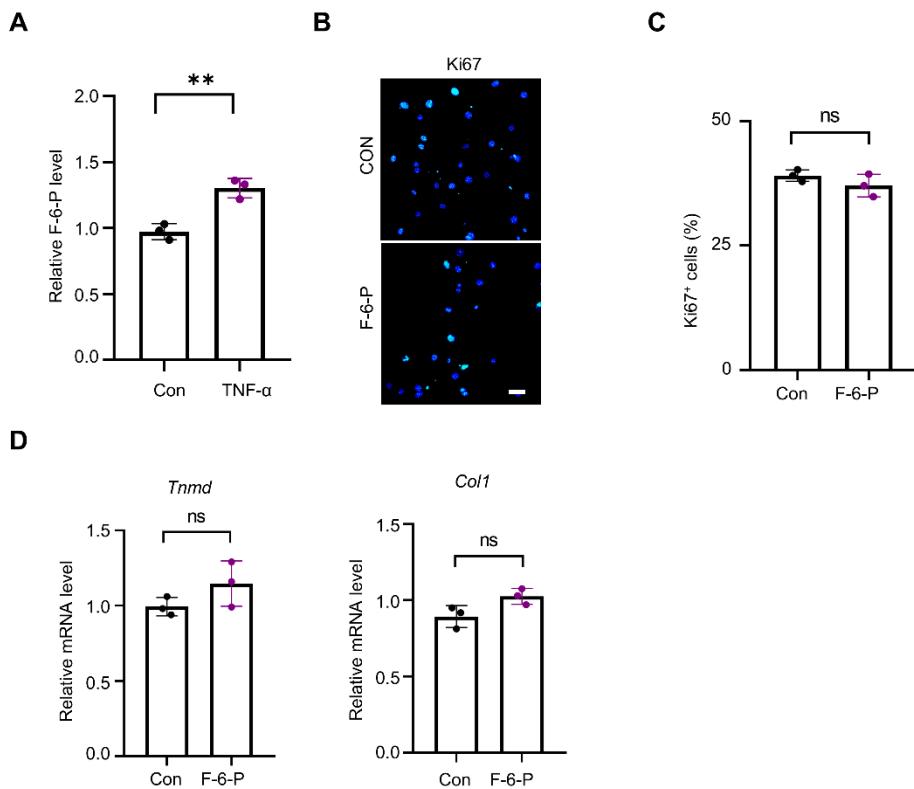
111


112 **Fig. S5** Macrophage knockout of *Ampka1* impairs the proliferation, migration, and
 113 differentiation of TSPCs. **(A)** Schematic representation of TSPCs stimulated by
 114 supernatant of *LysM-Cre; Ampka1^{fl/fl}* and control mouse-derived macrophages. **(B)** The
 115 protein level of Ki67 in TSPCs stimulated with different culture supernatants was
 116 analyzed by immunofluorescent staining. Scale bars: 20 μ m. **(C)** Quantitative analysis
 117 of Ki67-positive cells ($n = 3$). **(D)** Photograph of crystal violet staining in both TSPCs
 118 groups after 14 days of culture. **(E)** Quantification of crystal violet staining ($n = 3$). **(F)**
 119 Images of cell scratch assay for migration of TSPCs cultured for 0 and 24 h in both
 120 supernatant groups. Scale bars: 200 μ m. **(G)** The percentage of recovered area in scratch
 121 assay ($n = 3$). **(H)** The expression of *Col1*, *Tnmd*, and *Tnc* in both TSPCs groups was
 122 evaluated by qRT-PCR analysis ($n = 4$). **(I)** Photomicrographs of Sirius red staining of

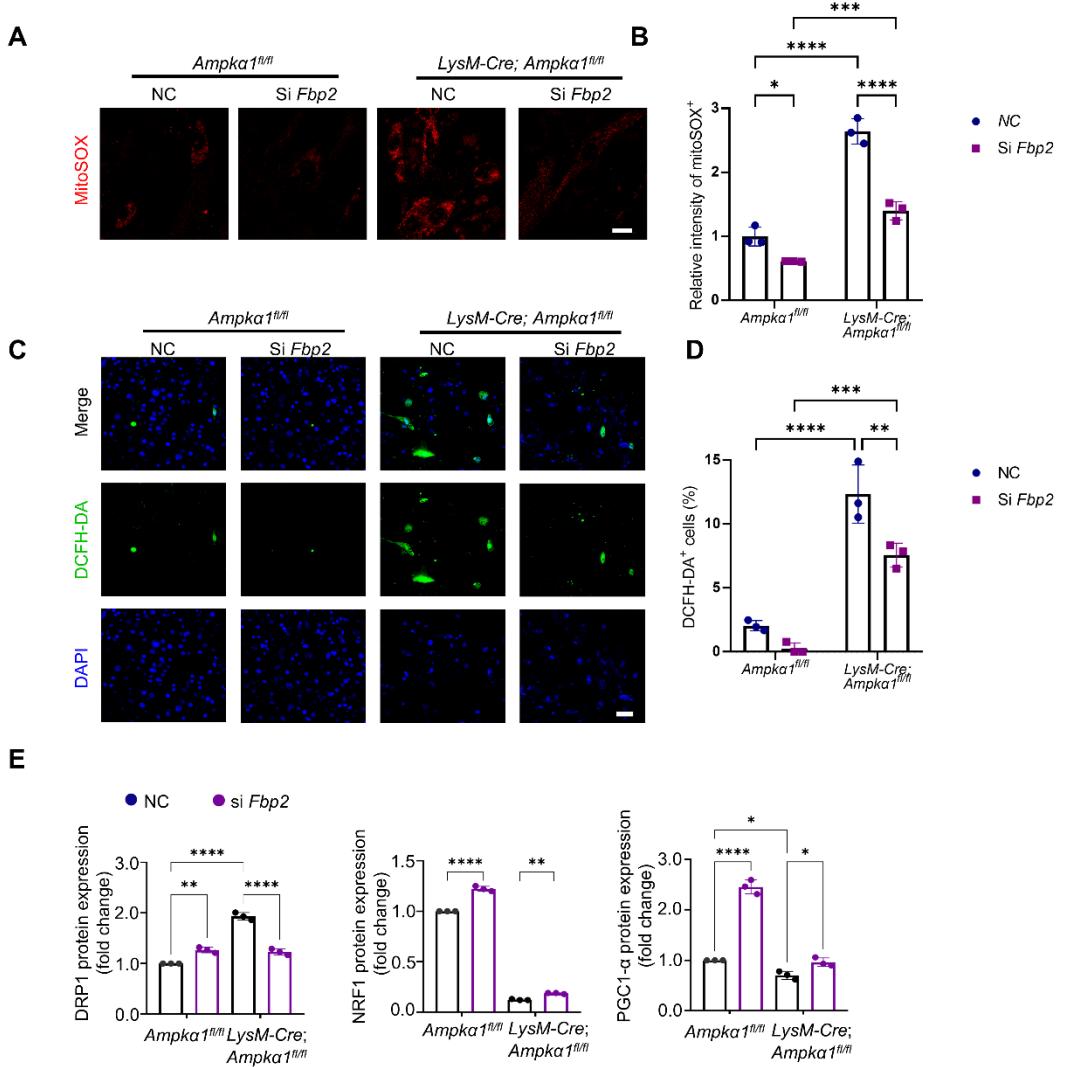
123 both TSPCs groups were cultured for two weeks after tenogenic differentiation
124 induction. Scale bars: 100 μ m. (J) Quantification of Sirius red-positive areas ($n = 5$).
125 * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.0001$.


126

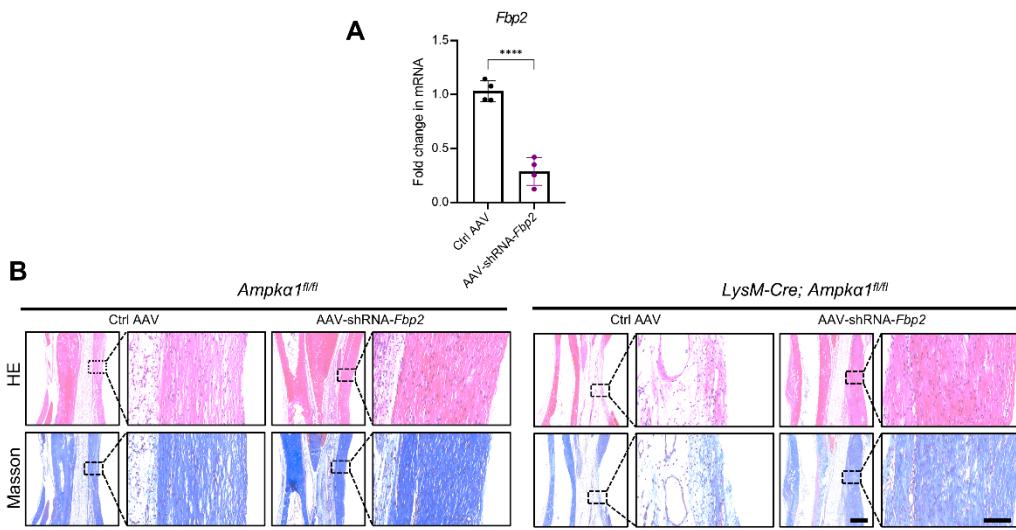
127 **Fig. S6** The colocalization of FBP2 and tendon-specific markers (CD146 and CD90) in
128 tendon tissue. Scale bars: 50 μ m.


129

130 **Fig. S7** TNF- α increased FBP2 levels through PI3K /AKT signaling. **(A)** The
 131 expression of *Fbp2* in TSPCs treated with a TNF- α neutralizing antibody was evaluated
 132 by RT-PCR analysis ($n = 3$). **(B)** Western blotting analysis of p-AKT, AKT and FBP2
 133 expression in TSPCs treated with a TNF- α neutralizing antibody. **(C)**
 134 Immunofluorescence staining results showed the protein expression levels of FBP2 (red)
 135 in TSPCs treated with a TNF- α neutralizing antibody. **(D)** Quantification of FBP2
 136 fluorescent intensity ($n = 3$). Scale bars:50 μ m. ** $p < 0.01$, and *** $p < 0.0001$.


137

138 **Fig. S8** Verification of the FBP2 knockdown efficiency. (A) The expression of *Fbp2*
 139 after siRNA treatment was evaluated by qRT-PCR analysis ($n = 3$). (B) Western
 140 blotting analysis of FBP2 expression after siRNA treatment ($n = 4$). *** $p < 0.001$.


141

142 **Fig. S9** Assessment of F6P content and its impact on TSPCs. **(A)** The levels of F6P of
 143 TSPCs stimulated by TNF- α was measured by using the fructose-6-phosphate assay kit.
 144 **(B)** Immunofluorescence staining results showed the protein expression levels of Ki67
 145 in TSPCs were treated with F-6-P (10mM) for 24 h, compared to control group. Scale
 146 bars: 20 μ m. **(C)** Quantification of ratio of Ki67 positive cells ($n = 3$). **(D)** The
 147 expression of *Tnmd*, and *Col1* in TSPCs treated with F-6-P for 24 h was evaluated by
 148 RT-PCR analysis ($n = 3$). ns: no significance; ** $p < 0.01$.

149

150 **Fig. S10** The impact of *Fbp2* knockdown on TSPCs mitochondria. (A)
151 Immunofluorescence staining results showed the fluorescence intensity of mitoSOX in
152 *Fbp2*-knockdown TSPCs, compared to NC group. Scale bars: 20 μ m. (B)
153 Quantification of mitoSOX fluorescent intensity ($n = 3$). (C) Immunofluorescence
154 staining results showed the fluorescence intensity of DCFDA in *Fbp2*-knockdown
155 TSPCs, compared to NC group. Scale bars: 50 μ m. (D) Quantification of DCFDA
156 fluorescent intensity ($n = 3$). (E) Quantification of western blotting results in Figure 6J
157 ($n = 3$). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** $p < 0.0001$.

158

159 **Fig. S11** *Fbp2* knockdown in TSPCs notably enhances tendon regeneration. **(A)** The
160 knockdown efficiency of shRNA targeting *Fbp2* in TSPCs were examined with qRT-
161 PCR ($n = 3$). **(B)** Representative HE staining and Masson trichrome staining of the
162 tendon from *LysM-Cre; Ampkα1^{fl/fl}* mice and *Ampkα1^{fl/fl}* mice injected with *AAV-Fbp2-*
163 *shRNA* and control *AAV-shRNA* at 4 weeks after injury. Low magnification image scale
164 bars: 500 μ m; high magnification image scale bars: 100 μ m.**** $p < 0.0001$.

165 **Supplementary Tables**166 **Table S1. The primers used for qRT-PCR identification.**

167 Gene	Primer sequences (5'-3')
<i>Ampka1</i> ^{flox/flox} Forward	CCCACCATCACTCCATCTCT
<i>Ampka1</i> ^{flox/flox} Reverse	AGCCTGCTTGGCACACTTAT
<i>LysM</i> -Cre Mutant	CCCAGAAATGCCAGATTACG
<i>LysM</i> -Cre Common	CTTGGGCTGCCAGAATTCTC
<i>LysM</i> -Cre Wild type	TTACAGTCGGCCAGGCTGAC

Table S2. The commercial reagents.

Reagents	Supplier
Formaldehyde Fixative Solution	Servicebio, China
Glutaraldehyde	Sigma, USA
Decalcification Solution	Servicebio, China
0.1% Triton Solution	Solarbio, China
5% Goat Blocking Serum	Zsbio, China
Bovine Serum Albumin	Sigma, USA
Hematoxylin-Eosin Staining Kit	Solarbio, China
MASSON Staining Kit	Beijing Solarbio
Picosirius Red Staining Kit	Solarbio, China
Low-glucose DMEM	Hyclone, USA
Fetal Bovine Serum	Gibco, USA
Penicillin/streptomycin	Hyclone, USA
L-glutamine	Hyclone, USA
Trypsin	Hyclone, USA
Dimethyl Sulfoxide (DMSO)	Solarbio, China
Recombinant TGF- β Factor	Peprotech, USA
GDF-5 Factor	R&D Systems, USA
Recombinant Mouse M-CSF Protein	Novoprotein, China
Recombinant Mouse TNF- α Protein	Novoprotein, China
lipopolysaccharide	Sigma, USA
Recombinant Mouse IL-4 Protein	Peprotech, USA
Collagenase I	Solarbio, China
Dispase	Roche, Switzerland
Lymphoprep TM	Stemcell Technologies, Canada
0.1% Crystal Violet Staining Kit	Solarbio, China
Cell Transfection Kit	Polyplus, France

Reagents	Supplier
PKH26 Red Staining Kit	Solarbio, China
Staurosporine	MedChemExpress, USA
Mouse ELISA Kit	MeiMian, China
Trizol	Thermo Fisher Scientific, USA
DEPC Water	Beyotime, China
Tris-HCl	Beyotime, China
Reverse Transcription Kit	Takara, Japan
SYBR Green Real-time Quantitative PCR Kit	Roche, Switzerland
RIPA Lysis Buffer	Thermo Fisher Scientific, USA
Protease/Phosphatase Inhibitor Cocktail	Thermo Fisher Scientific, USA
BCA Protein Quantification Kit	Thermo Fisher Scientific, USA
High-purity Heat-resistant DNA Polymerase	Solarbio, China
Tricolor Pre-stained Protein Standard	Biotides, China
Mouse Tail Collagen Solution	Corning, USA
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide	Tcichemicals, China
N-Hydroxysuccinimide	Sigma, USA
JC1 staining	Solarbio, China
Mito SOX Red	Yeasen, China
MitoTracker Red	Beyotime, China
HE staining	Solarbio, China
Sirius Red staining	Solarbio, China
Masson trichrome staining	Solarbio, China

170 **Table S3. The target sequences for *Fbp2* knockdown and negative control.**

171 Gene	Primer sequences (5'-3')
si <i>Fbp2</i> Forward	GCUAUUUACAGAAAGACCATT
si <i>Fbp2</i> Reverse	UGGUCUUUCUGUAAAAGCTT
si NC Forward	UUCUCCGAACCGUGUCACGUTT
si NC Reverse	ACGUGACACGUUCGGAGAATT

Table S4. List of RT-qPCR primers.

Gene	Primer sequences (5'-3')
<i>Actin</i> -F	CATGTTGAGACCTTCAACACCC
<i>Actin</i> -R	TGGCATAGAGGTCTTACGGATG
<i>Gapdh</i> -F	CATGGCCTTCCGTGTTCTA
<i>Gapdh</i> -R	CCTGCTTCACCACACCTTCTGA
<i>Yml</i> -F	CCAGTTGGGCTAAGGACAGG
<i>Yml</i> -R	CAGGTGAGTACACAGGCAGG
<i>Cd206</i> -F	GTGGAGTGATGGAACCCCAG
<i>Cd206</i> -R	CTGTCCGCCAGTATCCATC
<i>Tnf</i> -F	CCTGTAGCCCACGTCGTAGC
<i>Tnf</i> -R	AGCAATGACTCCAAAGTAGACC
<i>Nos2</i> -F	GTTCTCAGCCCAACAATACAAGA
<i>Nos2</i> -R	GTGGACGGGTCGATGTCAC
<i>Coll</i> -F	CCACCCCCAGCCGCAAAGAGTC
<i>Coll</i> -R	GTCATCGCACACAGCCGTGC
<i>Tnmd</i> -F	GGGCTGTCACATTCTAAATGCAG
<i>Tnmd</i> -R	TTCTTCTTCTCGCCGTTGCT
<i>Tnc</i> -F	TTCTTCTTCTCGCCGTTGCT
<i>Tnc</i> -R	AGAGGGTATGCTATAAGCCAGAA
<i>G6pc</i> -F	TCCGTGCCTATAATAAAGCAGT
<i>G6pc</i> -R	TGGCTTTCTTCCTCGAAAG
<i>Pgam1</i> -F	CAGGTAAAGATCTGGAGACGAT

<i>Pgam1</i> -R	CTTGCTGATGTTGCTGTAGAAG
<i>Eno1</i> -F	TTCGCACCTAACATCCTGGAGAAC
<i>Eno1</i> -R	GAACTCGGAGGCAGCCACATC
<i>Pfk1</i> -F	ACGGTATAACATCGTGCATGAT
<i>Pfk1</i> -R	GATGTTGTAGGTGCGGAGATTG
<i>Fbp2</i> -F	ACAGGACAAGGAGTAGATCTCT
<i>Fbp2</i> -R	TAGCAGCATCAAAATACTTGGC
<i>Gpi1</i> -F	ATTGCTCTGCATGTAGGTTTG
<i>Gpi1</i> -R	CTTGGTGATGTACTTCCGTTG
<i>Pgk1</i> -F	CAAATTCTGCTTGGACAATGGA
<i>Pgk1</i> -R	CCACACAATCCTCAAGAACAG
<i>Pkm</i> -F	TATCATTGCCGTGACTCGAAAT
<i>Pkm</i> -R	AAGTTACACGAAGGTCGACAT
<i>Aldoc</i> -F	ATGGCGCTGTGTACTAAAAATC
<i>Aldoc</i> -R	TGTAACATACTGGCAACGTTG
<i>Hk1</i> -F	ATTAAGAAGCGAGGGACTATG
<i>Hk1</i> -R	CTCCCCATTCCGTGTTAATACA
<i>Slc2a3</i> -F	TGGGATCAATGCTGTGTTCTAT
<i>Slc2a3</i> -R	CCAGGAACAGAGAAACTACAGT
<i>mt DNA</i>	GCCAGCCTGACCCATAGCCATAAT
<i>mt DNA</i>	GCCGGCTGCGTATTCTACGTTA
<i>nu-DNA</i>	TTGAGACTGTGATTGGCAATGCCT
<i>nu-DNA</i>	CCAGAAATGCTGGCGTACT

Table S5. The list of antibodies.

Antibody	Catalog No.	Supplier
NOS2	18985-1-AP	Proteintech, USA
CD206	18704-1-AP	Proteintech, USA
F4/80	ab90247	Abcam, USA
CD86	13395-1-AP	Proteintech, USA
CD68	ab303565	Abcam, USA
p-AMPK	ab90247	Thermo Fisher Scientific, USA
AMPK	#2532	Cell Signaling Technology, USA
SCX	ab58655	Abcam, USA
Ki67	ab16667	Abcam, USA
TNC	MA5-16086	Thermo Fisher Scientific, USA
COL1	14695-1-AP	Proteintech, USA
FMOD	60108-1-Ig	Proteintech, USA
FBP2	PA5-97265	Thermo Fisher Scientific, USA
FBP2	sc-166097	Santa Cruz, USA
GAPDH	TA-08	Zsbio, China
Vinculin	66305-1-lg	Proteintech, USA
β-Tubulin	10068-1-AP	Proteintech, USA
ACTB	TA-09	Zsbio, China
DRP1	sc-101270	Santa Cruz, USA
PGC-1α	sc-518025	Santa Cruz, USA
NRF-1	sc-28379	Santa Cruz, USA
HRP-linked anti-mouse IgG	ZB-2305	Zsbio, China
HRP-linked anti-rabbit IgG	ZB-2301	Zsbio, China

Antibody	Catalog No.	Supplier
FITC-labeled goat anti-mouse IgG (H + L)	ZF-0312	Zsbio, China
FITC-labeled goat anti-rabbit IgG (H + L)	ZF-0311	Zsbio, China
FITC-labeled goat anti-rat IgG (H + L)	ZF-0315	Zsbio, China
Rhodamine labeled goat anti-mouse IgG (H + L)	ZF-0313	Zsbio, China
Rhodamine labeled goat anti-rabbit IgG (H + L)	ZF-0316	Zsbio, China
Rhodamine labeled goat anti-rat IgG (H + L)	ZF-0318	Zsbio, China
Mounting Medium with DAPI	ZLI-9557	Zsbio, China