

Supplementary Materials for

GFPT2 drives sunitinib resistance of clear cell renal cell carcinoma via enzyme-dependent and -independent manners

Authors

Songbo Wang^{1,a}, Jiajun Xing^{1,a}, Xiaoyi Wang^{2,a}, Zengjun Wang^{1,*}, Pengfei Shao^{1,*}, Chenkui Miao^{1,*}

Affiliations

¹ Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

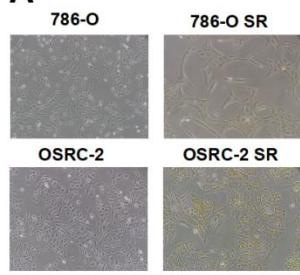
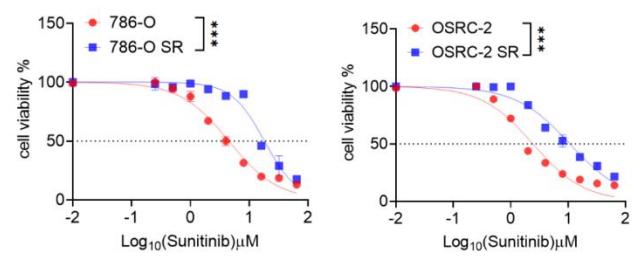
² Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

***Corresponding Author.** Email: zengjunwang@njmu.edu.cn, spf8629@163.com, medicalmck@163.com

^aThese authors contributed equally to this work.

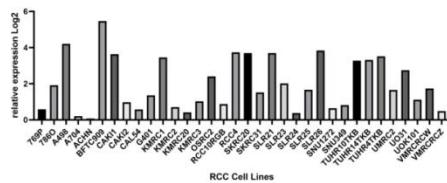
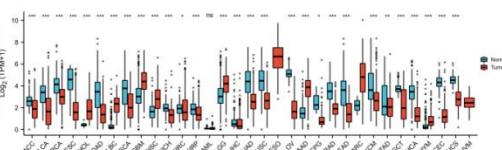
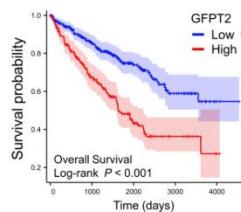
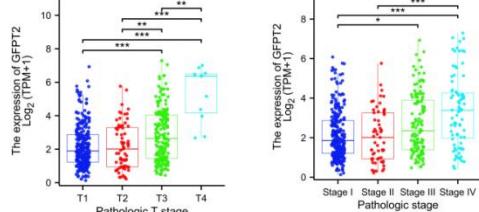
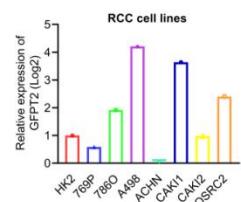
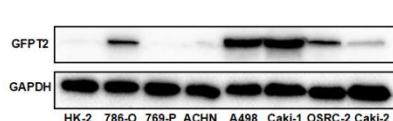
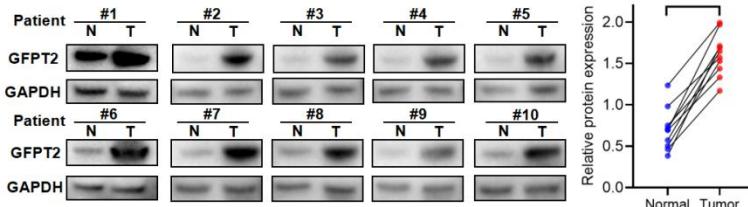
This PDF file includes:

Figs. S1 to S4



Tables S1 to S5

33 **Supplemental Figures**

34 **Fig. S1.**








35 (A). Optical micrograph showing 786-O and OSRC-2 cells with sunitinib resistance (786-O SR
36 and OSRC-2 SR).

37 (B). 786-O, OSRC-2, 786-O SR and OSRC-2 SR cells were with a serial dose of sunitinib for 24h
38 and subjected to CCK-8 assay.

A**B**

40 **Fig. S2.**

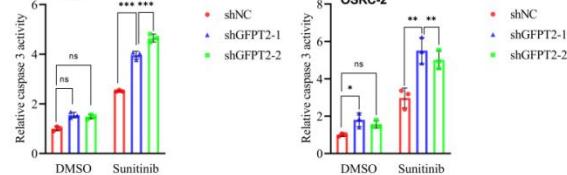
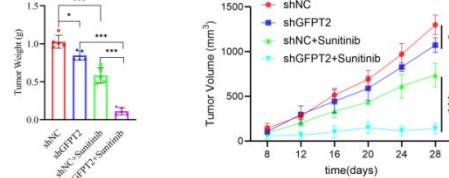
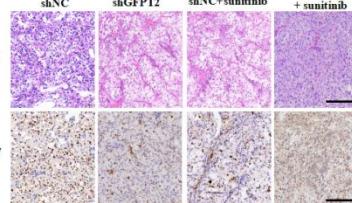
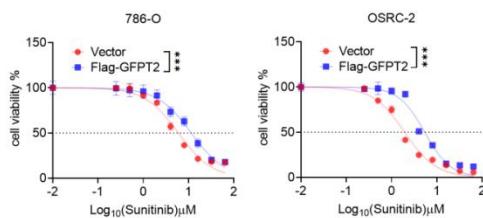
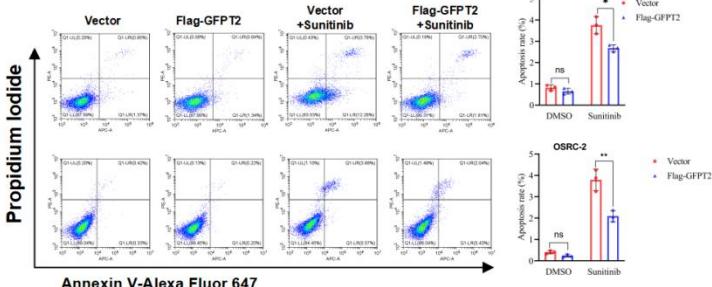
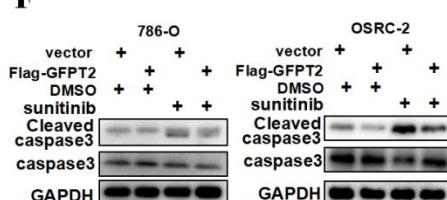
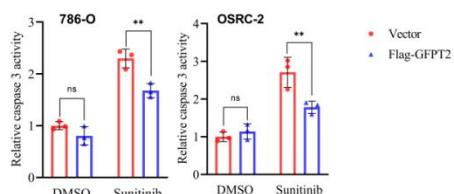
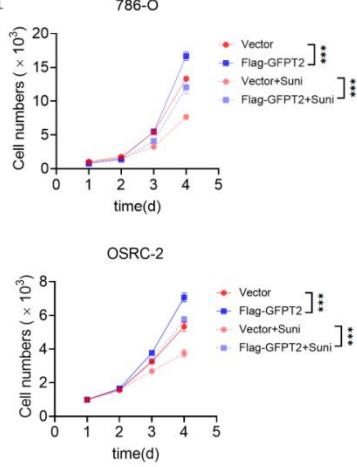
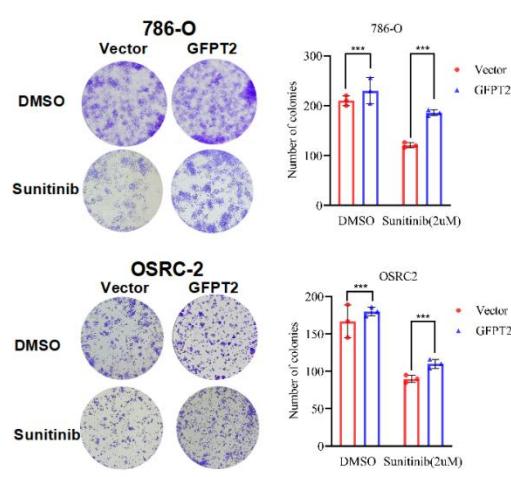
41 (A). mRNA expression levels of GFPT2 in various RCC cell lines from the CCLE database.
42 (B). GFPT2 mRNA levels in normal and tumor tissues from the TCGA cohort.
43 (C). Kaplan–Meier survival plots of OS according to GFPT2 mRNA expression in RCC
44 specimens from the TCGA RCC cohort.
45 (D). Relationship between GFPT2 mRNA expression and T stage, pathological TNM stage in
46 patients in the TCGA RCC cohort.
47 (E). qRT-PCR verification of GFPT2 mRNA expression between RCC cell lines.
48 (F). WB detected GFPT2 protein expression in RCC cell lines.
49 (G). WB detected GFPT2 protein expression between RCC tissues (T) and adjacent noncancerous
50 tissues (N) from the NJMU RCC cohort. The protein level of GFPT2 relative to that of actin was
51 measured using ImageJ.

A**B****C****D****E****F****G**

53 **Fig. S3.**

54 (A). 786-O and OSRC-2 cells were transfected with indicated constructs for 24 h. Cells were
55 treated with or without sunitinib (2 μ M) for another 24 h. Cells were collected for Caspase 3
56 activity assay. Data presents as mean \pm SEM with three replicates. ns, not significant, *P < 0.05,
57 **P < 0.01 and ***P < 0.001.

58 (B). Tumor volumes and tumor weight were measured in the indicated groups. Data presents as
59 mean \pm SEM with five replicates. *P < 0.05; ***P < 0.001.










60 (C). Representative images of HE and IHC for Ki-67. Scale bar, 50 μ m.

61 (D). 786-O and OSRC-2 cells were transfected with or without Flag-GFPT2. These cells were
62 treated with a serial dose of sunitinib for 24h and subjected to CCK-8 assay. The IC50 values of
63 sunitinib in each group were indicated.

64 (E-G). 786-O and OSRC-2 cells were transfected with indicated constructs for 48 h. After 24 h
65 puromycin selection, cells were treated with or without sunitinib (2 μ M) for another 24 h. Cells
66 were collected for Annexin v-FITC/7-AAD assay(F), Western blot analysis(F) and Caspase 3
67 activity assay(G). Data presents as mean \pm SEM with three replicates. Ns, not significant and **P
68 < 0.01.

69 (H). 786-O and OSRC-2 cells were transfected with indicated constructs for 72 h. After
70 puromycin selection, these cells were treated with or without sunitinib (2 μ M) for 96h and
71 subjected to CCK-8 assay. Data presents as mean \pm SEM with three replicates. P values were
72 determined by two-tailed t test. ***P < 0.001.

73 (I). The growth of 786-O, OSRC-2, 786-O Flag-GFPT2 and OSRC-2 Flag-GFPT2 cells were
74 determined using colony formation assay after sunitinib (2 μ M) treatment. Data presents as mean
75 \pm SEM with three replicates. *** P < 0.001.

A**B****C****D****E****F****G****H****I**

77 **Fig. S4.**

78 (A). HMOX1 mRNA levels in normal and tumor tissues from the TCGA cohort.

79 (B-D). 786-O, OSRC-2, 786-O SR and OSRC-2 SR cells were transfected with indicated

80 constructs for 72 h. After puromycin selection, these cells were treated with a serial dose of

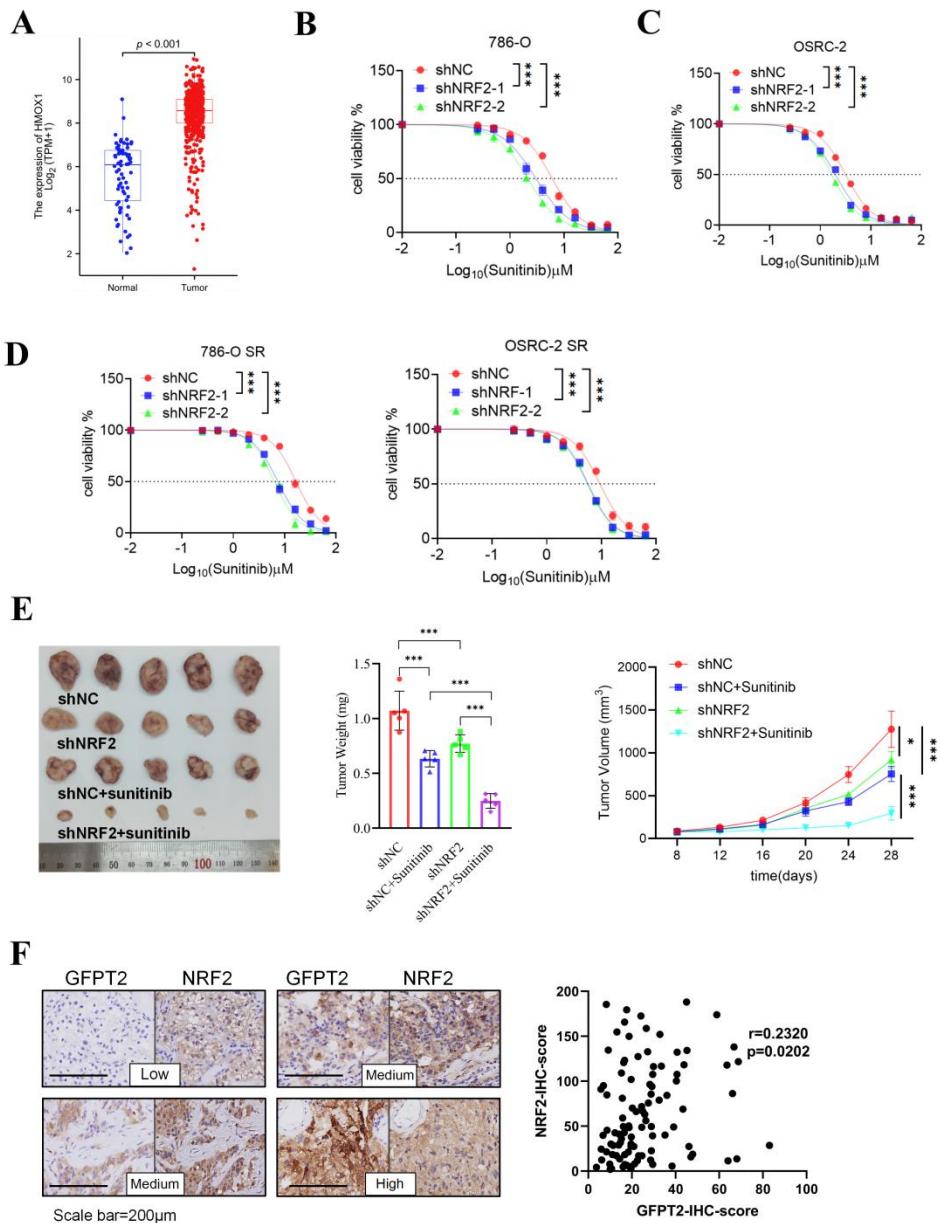
81 sunitinib for 24h and subjected to CCK-8 assay. The IC50 values of sunitinib in each group were

82 indicated.

83 (E). OSRC-2 cells were transfected with indicated constructs for 72 h. After puromycin

84 selection, these cells were subcutaneously injected into the nude mice. These mice

85 were treated with or without sunitinib (oral administration, 25 mg/Kg, once a day for


86 8 days). The tumor image was showed in panel E. Tumor volumes and tumor weight were

87 measured in the indicated groups. Data presents as mean \pm SEM with five replicates. *P <0.05;

88 ***P <0.001.

89 (F). Correlation analysis of GFPT2 and NRF2 in the NJMU-ccRCC cohort (Spearman correlation,

90 P < 0.05).

92 **Supplemental Tables**93 **Table S1.**

94 Clinical information on the tissue microarray.

95

NJMU cohort

Location

Left 51

Right 52

WHOISUP

1 2

2 55

3 40

4 6

Size

>4cm 80

<4cm 23

TMN(T)

T1 54

T2 11

T3 32

T4 6

TMN(N)

N0 102

N1 1

TMN(M)

M0 103

M1 0

96

97 **Table S2.**

98 Sequences of small interference RNAs.

99

siRNA	sequences
siGFPT2-1	ACCATCGCCAAGCTGATTAAA
siGFPT2-2	ATCCGTGGCTTGAGATCTTTA
siGFPT2-3	AGGTAACCTCAGTGCCTTAT
siNRF2-1	CCGGCAUUUCACUAAACACAA
siNRF2-2	GCAGUUCAAUGAAGCUCAACU
siNRF2-3	CAGUCUUCAUUGCACUAAUC

100

101 **Table S3.**

102 The primer sequences for each primer set.

103

primers	sequences
GFPT2-F	ATGTGCGGAATCTTGCCTAC
GFPT2-R	ATCGAGAGCCTGACTTCCC
GAPDH-F	GGAGCGAGATCCCTCCAAAAT
GAPDH-R	GGCTGTTGTCATACTTCTCATGG
ANKRD1-F	GTGCTGAGCAACTTATCTCGG
ANKRD1-R	CGTGGAGGAAACCTGGATGTT
CCN1-F	CGCCGAAGTTGCATTCCAG
CCN1-R	CTCGCCTTAGTCGTCACCC
CCN2-F	AACCACGGTTGGTCCTTGG
CCN2-R	CAGCATGGACGTTCGTCTG
AKR1C1-F	TCCAGTGTCTGTAAAGCCAGG
AKR1C1-R	CCAGCAGTTCTCTGGTTGAA
HMOX1-F	AAGACTGCGTTCCTGCTAAC
HMOX1-R	AAAGCCCTACAGCAACTGTCG

104

105 **Table S4.**

106 Reagent and supplier information.

107

Antibodies	Source	Identifier
Anti-GFPT2	Abcam	Cat#ab190966
Anti-GAPDH	Cell Signaling Technology	Cat#5174
Anti-Cleaved Caspase3	ORIGENE	Cat#TA327916S
Anti-Caspase3	ORIGENE	Cat#TA322764S
Anti-O-GlcNAc	Abcam	Cat#ab2739
Anti-OGT	Abcam	Cat#96718
Anti-YAP1	Cell Signaling Technology	Cat#14074
Anti-LaminB1	Proteintech	Cat# 12987-1-AP
Anti-HMOX1	Proteintech	Cat# 10701-1-AP
Anti-KEAP1	Proteintech	Cat#10503-2-AP
Anti-NRF2	Cell Signaling Technology	Cat#12721
Anti-NRF2	Santa Cruz	Cat#sc722
Anti-Ubiquitin	Cell Signaling Technology	Cat#3936
Anti-Flag	Cell Signaling Technology	Cat#8146
Anti-HA	Cell Signaling Technology	Cat#3724
Anti-Myc	Cell Signaling Technology	Cat#2276

108

109

Cell	Group	IC50	Cell	Group	IC50
786-O	Gln+	4.312	OSRC-2	Gln+	2.454
	Gln-	2.671		Gln-	1.289
786-O	Gln+	14.46	OSRC-2	Gln+	8.799
	SR	2.547		SR	2.404
	shNC	4.48		shNC	3.601
786-O	shGFPT2-1	1.068	OSRC-2	shGFPT2-1	1.123
	shGFPT2-2	1.251		shGFPT2-2	0.773
786-O	shNC	11.73	OSRC-2	shNC	8.065
	SR	1.808		shGFPT2-1	2.685
	shGFPT2-2	2.364		shGFPT2-2	2.411
786-O	Vector	5.96	OSRC-2	Vector	1.943
	Flag-GFPT2	11.45		Flag-GFPT2	5.353
	shNC	4.801		shNC	3.776
786-O	si-YAP1	2.794	OSRC-2	si-YAP1	2.129
	shGFPT2-1+si-YAP1	1.178		shGFPT2-1+si-YAP1	0.8191
	shGFPT2-1	1.176		shGFPT2-1	0.7176
	shNC	16.23		shNC	9.943
786-O	shGFPT2-1	6.874	OSRC-2	shGFPT2-1	4.764
SR	shGFPT2-1+WT-GFPT2	15.54		shGFPT2-1+WT-GFPT2	10.64
	shGFPT2-1+MUT-GFPT2	11.96		shGFPT2-1+MUT-GFPT2	7.546
786-O	NC	4.785	OSRC-2	NC	2.43
	SR	18.08		SR	10.69
	shNC	6.041		shNC	3.154
786-O	shNRF2-1	3.027	OSRC-2	shNRF2-1	1.979
	shNRF2-2	2.115		shNRF2-2	1.666
786-O	shNC	16.62	OSRC-2	shNC	9.36
	SR	7.37		shNRF2-1	5.683
	shNRF2-2	6.319		shNRF2-2	5.475