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Abstract 

Drug resistance remains a major obstacle to successful chemotherapy, leading to treatment failure and 
tumor recurrence. Recent studies indicate that mutations in FAT Atypical Cadherin 1 (FAT1) contribute 
to drug resistance in cancer cells. However, the precise role and underlying mechanisms of FAT1 in breast 
cancer (BC) remain insufficiently explored. Here, we conducted a comprehensive genomic and 
transcriptomic analysis, identifying FAT1 as a crucial tumor suppressor gene in BC. Our study 
demonstrates that genomic alterations in FAT1 are associated with the Wnt/β-catenin pathway activation. 
We further show that FAT1 loss induces cyclophosphamide (CTX) resistance and leads to the 
upregulation of the Wnt signaling cascade, accompanied by the accumulation of CTNNB1 transcription 
factors. Notably, combination therapy effectively alleviates drug resistance by suppressing the Wnt 
pathway. These findings highlight the critical role of FAT1 loss in mediating CTX resistance in BC and 
provide insights into potential therapeutic strategies targeting the Wnt pathway. 
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Introduction 
Breast cancer (BC) has recently surpassed lung 

cancer as the most commonly diagnosed malignancy 
in women worldwide [1]. Despite significant 
advances in early detection and treatment, BC 
remains a leading cause of cancer-related mortality 
[2]. Chemotherapy remains a cornerstone in BC 

treatment, significantly reducing recurrence and 
metastasis risk while improving survival in advanced 
cases [3]. Standard regimens, including anthracyclines 
and taxanes, are frequently combined with 
cyclophosphamide (CTX). Moreover, molecular- 
targeted therapies such as trastuzumab, pertuzumab, 
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CDK4/6 inhibitor (CKI), and PARP inhibitor (PARPi) 
are employed with chemotherapy [4, 5]. 

However, primary and acquired drug resistance 
continues a major obstacle to successful treatment, 
contributing to disease progression and poor 
prognosis [6]. Among the various genetic alterations 
implicated in BC, FAT Atypical Cadherin 1 (FAT1) 
mutations have emerged as critical determinants of 
tumor behavior and therapeutic response [7, 8]. FAT1, 
a member of the cadherin superfamily, is known to 
function as a tumor suppressor, and its loss has been 
associated with enhanced cell proliferation and 
metastatic potential [9–11]. Recent studies suggest 
that FAT1 mutations may lead to aberrant activation 
of the Wnt signaling pathway, a key regulator of cell 
growth, differentiation, and therapy resistance [10, 
12–14]. However, the precise mechanisms by which 
FAT1 modulates drug resistance remain poorly 
defined. 

In this study, we investigated FAT1 genomic 
alterations using patient-derived organoids (PDOs) 
and assessed the impact of FAT1 loss on CTX 
resistance. We further explored the role of 
combination therapy in overcoming drug resistance 
through Wnt pathway inhibition. Our findings offer 
novel insights into the molecular mechanisms 
underlying CTX chemoresistance in BC and identify 
potential therapeutic avenues for patients harboring 
FAT1 mutations. 

Results  
BC PDOs retain characteristics of primary 
tumors 

PDOs were characterized to maintain the 
histological features, genomic profiles, and tumor 
heterogeneity of primary tissue [15–18]. Accordingly, 
we successfully established individual PDOs from 
biopsy samples of BC patients (Figure 1A). BC1 and 
BC29 showed small-solid morphologies, while BC27 
and BC32 displayed denser structures. Notably, BC26 
presented a hollow-cystic morphology (Figure 1B). 
Each PDO exhibited unique formation rate, 
proliferation index, and growth size. Specifically, 
BC26 and BC32 demonstrated faster organoid 
formation, indicating a more efficient growth process 
(Figure S1A). In contrast, BC27 had the lowest 
proliferation index, suggesting limited growth 
potential (Figure S1B). Over the six-day period, BC26 
became the largest size among all PDOs, followed in 
size by BC32, BC29, BC27 and BC1 (Figure S1C). 
These individual variations reflect the heterogeneity 
of tumors and the diversity among patients. 
Haematoxylin and eosin (H&E) and immuno-
histochemical (IHC) staining confirmed that PDOs 

maintained key histological features and biomarker 
expression, including Ki-67, estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2), from the parental 
tissues (Figure 1C; Figure S1D). PDOs maintained 
stable histoarchitecture and phenotypic features 
during long-term culture. Consistently, BC1 retained 
its dense morphology, while BC26 preserved it’s a 
lumen-like structure (Figure S1E). 

To evaluate the extent to which PDOs 
recapitulate the molecular characteristics of their 
corresponding primary tumors, Whole Exome 
Sequencing (WES) was conducted to assess their 
genomic concordance. Consistent with previous WES 
studies, the results revealed that the missense 
mutations (93.94%) were most common, with smaller 
proportions of nonsense mutations, frameshift 
insertions/deletions, and in-frame variants. Among 
variant classifications, single-nucleotide poly-
morphisms (SNPs) (95.43%) were the predominant 
variation type across all samples followed by 
deletions (DEL, 2.78%) and insertions (INS, 1.79%) 
(Figure 1D) [19, 20]. Copy number variations (CNVs) 
in PDOs closely mirrored the those in the primary 
tumors, exhibiting similar patterns of chromosomes 
amplification and deletion (Figure 1E). Even after 
extended passaging, the PDOs preserved the majority 
characteristic in early-passage PDOs (Figure 1F). 
Additionally, the spectrum of point mutations of 
PDOs and parental tumor were highly consistent, 
with C>T and T>C substitutions being the most 
dominant types (Figure 1G). Further analysis of 
COSMIC mutational signatures revealed that the 
PDOs retained the majority of the mutational 
signatures (Figure S1F). We also identified several 
mutations in oncogenes (e.g., ESR1, FGFR3, MKI67, 
NRG1, ROS1) and tumor suppressor genes (e.g., ALK, 
AXIN2, BRCA2, FAT1, KMT2B, KMT2D, SPEN) 
(Figure 1H). In summary, PDOs effectively preserved 
the histological and genomic features of their parental 
tumors, confirming their reliability as BC models. 

Drug screening assay in PDOs 
PDOs are increasingly used to model 

individualized drug responses in vitro. Taxanes and 
anthracyclines, in combination with CTX, commonly 
known as TAC or AC, are essential first-line 
chemotherapy regimens in BC treatment [21]. To 
evaluate the utility of PDOs in modeling clinical drug 
responses, we tested the sensitivity of four PDOs 
(BC1, BC26, BC29, and BC32) to a panel of 
chemotherapeutic and targeted agents, including 
doxorubicin, phosphoramide mustard (active 
metabolite of CTX), palbociclib (CKI), and olaparib 
(PARPi) (Figure 2A). 
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Figure 1. PDOs recapitulate the histopathologic and genetic characteristics of parental tissue. (A) Schematic overview of a precision oncology workflow. PDOs 
are established from breast tumor tissues and typically mature within days 10–14. Once matured, PDOs undergo downstream analyses to guide personalized treatment 
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strategies. (B) Bright-field microscopy images of PDOs established from BC samples of five individual patients (BC1, BC26, BC27, BC29, and BC32). Scale bar: 100 µm. (C) H&E 
and IHC staining (Ki67, ER, PR, HER2) confirm that BC27 maintain the molecule feature of the original tissue. Scale bar: 100 µm. (D) Summary of mutation types and variant 
classifications in PDOs. The left pie chart shows the distribution of variant types: single nucleotide polymorphisms (SNP, 95.43%), insertions (INS, 1.79%) and deletions (DEL, 
2.78%). The right chart categorizes variants, including frame-shift deletions (1.42%) / insertions (0.6%), in-frame deletions (1.32%) / insertions (0.99%), missense mutations 
(93.94%) and nonsense mutations (1.72%). (E) Heatmap of CNVs analysis reveals genomic alterations across chromosomes in individual genomes. (F) CNV patterns remain stable 
after more than 10 passages, as shown by comparative heatmaps. (G) Ti (Transition) / Tv (Transversions) ratios are displayed across samples, and mutation spectra indicate that 
PDOs closely recapitulate the mutational landscape of the original tumor tissues. Sample labels follow the format: BC1_T for breast cancer tissue and BC1_O for the 
corresponding organoid. (H) Overview of somatic mutations identified in tissue and paired PDOs. The heatmap displays selected gene mutations across samples, with a focus on 
those harboring FAT1 mutations. The adjacent bar graph summarizes the frequency of mutation types. 

 
Drug sensitivity was quantitatively assessed 

using half-maximal inhibitory concentration (IC₅₀) 
values. Our drug screening results demonstrated 
PDOs were highly sensitive to doxorubicin at 
concentrations below 0.1 μM, highlighting its strong 
therapeutic efficacy in clinical (Figure 2B). Olaparib, a 
PARPi used in the treatment of BRCA-mutated 
cancers, demonstrated enhanced toxicity in BC29, 
which harbored a missense mutation in BRCA2 
(Figure 1F, 2B) [22]. We also conducted drug 
screening using CTX and CKI, considering their 
relevance as commonly used. Specifically, BC26 (CTX, 
CKI < 100 μM) and BC29 (CTX, CKI < 50 μM) 
exhibited resistance to single-agent treatment, while 
BC1 (CTX, CKI < 0.1 μM) and BC32 (CTX < 10 μM, 
CKI < 0.1 μM) showed relatively higher sensitivity 
(Figure 2A, 2B). Thus, we categorized PDOs into 
resistant (BC26 and BC29) and sensitive (BC1 and 
BC32) groups (Figure 2C). 

Combination therapies are essential for 
combating cancer [23], we treated PDOs with a 
combination of CTX and CKI (Figure 2C). The results 
revealed a distinct response pattern between the two 
groups, with the sensitive group consistently 
responding well to both monotherapy and 
combination treatment. In contrast, the resistant 
group displayed limited response to monotherapy but 
responded significantly better to combination 
therapy, with IC₅₀ values reduced by approximately 
20- to 40-fold (Figure 2C, D, and G). Live/dead cell 
staining further confirmed these findings, showing a 
notable increase in dead cells in the resistant group 
after combination therapy (Figure 2E). In contrast, the 
sensitive group exhibited a predominance of dead 
cells under both treatment conditions, indicating 
inherent sensitivity to the therapies (Figure 2F). 
Collectively, these results suggest that combination 
therapy is more effective than single-agent treatments 
in the resistant group. 

Transcriptomic analysis of mono- and 
combination therapy in PDOs 

To explore the mechanisms underlying the 
efficacy of combined therapy in overcoming drug 
resistance, we performed bulk RNA sequencing on 
both treated and untreated PDOs. Gene ontology 
(GO) enrichment analysis showed that pathways 
related to DNA replication and cell cycle regulation in 

the sensitive group were significantly downregulated 
following treatment with either CTX or CKI (Figure 
3A). Combination therapy in the sensitive group 
further reinforced these effects, with consistent 
suppression of cell cycle–related pathways such as 
nuclear DNA replication and muscle cell migration, 
indicating a sustained therapeutic impact (Figure 3B). 
In contrast, the resistant group exhibited limited 
changes under monotherapy, with only a few 
pathways being affected, suggesting reduced 
responsiveness (Figures 3C). However, combination 
therapy led to a marked downregulation of 
proliferation and DNA replication pathways in the 
resistant group (Figure 3D). 

We also conducted gene set enrichment analysis 
(GSEA) to compare the untreated resistant and 
sensitive groups. The hallmark analysis revealed that 
proliferation-related processes, including epidermis 
development and cell differentiation, were 
significantly enriched in the resistant group, 
suggesting that these cells rely on robust growth 
mechanisms to survive treatment (Figure 3E). In 
contrast, the sensitive group showed enrichment in 
cell cycle regulation pathways, such as the G2M 
checkpoint and E2F targets, indicating that sensitivity 
to CTX and CKI may be linked to disrupted cell cycle 
regulation (Figure 3F). Notably, embryonic-related 
pathways, such as organ and skeletal system 
development, were significantly enriched in the 
resistant group and markedly diminished following 
combination therapy. This shift indicates a reduction 
in stem-like cancer cells and an enhancement in drug 
sensitivity (Figure 3G, 3H). These results emphasize 
the complementary effects of CTX and CKI, 
highlighting the therapeutic potential of this 
combination strategy in cancer treatment. 

FAT1 mutations and expression levels in BC 
Genomic instability in cancer cells leads to 

genetic alterations that contribute to drug resistance 
and promote tumorigenesis. Among these, SNPs and 
CNVs in genes are recognized as major drivers of 
these processes [24]. Among the four PDO samples for 
drug screening, missense mutations of FAT1 in the 
resistant group (BC26 and BC29) were detected based 
on our previous WES data, but not in the sensitive 
group (BC1 and BC32). 
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Figure 2. Drug screening test in PDOs. (A)The heatmap illustrates IC₅₀ values (μM) of four drugs across PDOs, indicated by color gradients. The corresponding drug 
targets and associated pathways are listed on the right. (B)Dose-response curves of four different single drugs in PDOs. Error bars: ±s.d, n=2. (C, D) A combination treatment 
was performed on four PDOs. Each curve represents a different PDO line (BC1, BC26, BC29, BC32). Error bars: ±s.d, n=2. (E, F) Images of PDOs stained with Calcein/PI (Red: 
dead cell, Green: live cell) under control, CTX and CTX+CKI treatments. Red arrows highlight regions of increased cell death. Scale bar: 100 µm. (G) Bar graph of resistance 
factor (RF), calculated as the ratio of IC₅₀ values between CKI+CTX combination and CTX monotherapy across PDO samples. Higher RF indicates stronger resistance to CTX 
alone. 
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Figure 3. Bulk-RNA analysis reveals different responses to monotherapy and combined therapy across the sensitive (BC1, BC32) and the resistant group 
(BC26, BC29). (A-B) GO enrichment analysis reveals both monotherapy (CTX or CKI) (e.g. BC32) and combined therapy (CTX+CKI) induce strong responses in the sensitive 
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group. (C-D) In the resistant group, monotherapy (CTX or CKI) induces minimal pathway activation, while combination therapy (CTX+CKI) leads to a marked increase, 
especially in DNA replication and cell cycle progression (highlighted in red). (E-F) GSEA plots illustrate baseline transcriptional differences prior to treatment. In the resistant 
group, epithelial cell proliferation-related pathways are activated, while cell-cycle related processes dominate in the sensitive group. (G-H) Comparative GO analysis under 
untreated (G) and combination therapy (H) conditions. Stem-related pathways (pink) are enriched in the resistant group but disappear after combination therapy. 

 

 
Figure 4. FAT1 expression levels and mutation landscape in BC. (A) Missense mutations were detected in the resistant group (BC26, BC29), which also exhibited 
significantly lower FAT1 expression compared to the sensitive group (BC1, BC32). n=3, Error Bars: ±s.d. (B) Mutation frequency and types of FAT1 across tumor types (TCGA, 
PanCancer Atlas). (C) Distribution of FAT1 mutation types in BC (TCGA, PanCancer Atlas). (D) Lollipop plot illustrates the location and types in FAT1 mutation in BC (MSK, 
Cancer Discovery), with missense mutations being the most prevalent. (E) OncoPrint visualization of FAT1 (MSK, Cancer Discovery). (F) FAT1 protein level in different tumors 
(TCGA database). (G-H) Compared to normal breast tissue, FAT1 levels are significantly reduced in BC and are significantly decreased across different stages. 

 
Guided by literature identifying FAT1 as a 

frequently mutated gene associated with cancer 
progression and drug resistance, we focused on FAT1 
(Figure 1H) [7, 14, 25]. To further confirm these 
findings, we quantified FAT1 mRNA expression 
using quantitative real-time PCR (qRT-PCR), which 
revealed significantly lower expression in the 
resistant group compared to the sensitive ones (Figure 
4A).  

FAT1 is frequently mutated across various 
cancers, and its downregulation has been linked to 

increased stemness and cisplatin resistance in 
esophageal squamous cell carcinoma [14]. Functional 
loss of FAT1 is associated with resistance to CKI 
through the Hippo signaling pathway, suggesting 
that FAT1 plays a key role in modulating drug 
resistance [26]. Given its relevance, we then examined 
FAT1 mutations in pan-cancer datasets using 
cBioPortal, finding that FAT1 mutations occur in over 
10% of nine tumor types (TCGA, PanCancer Atlas) 
(Figure 4B). The most common FAT1 mutations were 
missense (green) and truncating (black), primarily 
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affecting the extracellular and cytoplasmic regions 
(Figure 4A, 4C-D). In BC, the mutation rate was 
approximately 7% in a cohort of 1,365 samples (MSK, 
Cancer Discovery 2022) (Figure 4E), constituting a 
certain proportion among BC patients.  

To further assess expression patterns, we 
analyzed FAT1 protein levels across 24 tumor types 
using the UALCAN database. The results confirmed 
significantly lower FAT1 levels in BC tissues 
compared to normal breast tissue [11] (Figure 4F–H). 
These findings suggest that reduced FAT1 expression 
may contribute to drug resistance and poorer survival 
outcomes. Accordingly, we classified the sensitive 
group as FAT1 wild-type (FAT1-WT) and the resistant 
group as FAT1 mutant (FAT1-Mut) for subsequent 
analysis. 

FAT1 loss is associated with CTX resistance 
To investigate the role of FAT1 in BC, we 

engineered MDA-MB-231 and MCF-7 cell lines using 
siRNAs. In the established FAT1-knockdown (FAT1- 
KD) cell lines, groups #1 and #3 effectively 
downregulated FAT1 expression in both MDA-MB- 
231 and MCF-7 cells, as shown by qRT-PCR (Figure 
5A). Western blotting analysis further confirmed 

decreased FAT1 protein levels in these groups (Figure 
5B). Functionally, FAT1-KD significantly accelerated 
cell proliferation, supporting its role as a tumor 
suppressor (Figure 5C). We then evaluated the 
relationship between FAT1-KD and drug resistance. 
Surprisingly, FAT1-KD cells exhibited increased 
resistance to CTX. In MCF-7 cells, groups #1 (423.4 
μM) and #3 (326.6 μM) showed significantly higher 
cell viability compared to the control (82.05 μM) 
under CTX treatment. Similarly, in MDA-MB-231 
cells, groups #1 (499.9 μM) and #3 (449.8 μM) 
exhibited resistance compared to the control (147.3 
μM) (Figure 5D). These results indicate that FAT1-KD 
is associated with reduced sensitivity to CTX. 

To further validate our hypothesis, we also 
analyzed clinical outcomes in a cohort of 454 BC 
patients treated with CTX from 1,084 samples (TCGA, 
PanCancer Atlas). Survival analysis revealed that 
patients with FAT1 mutations had significantly 
poorer overall survival (OS), progression-free 
survival (PFS), and disease-specific survival (DSS) 
compared to those with wild-type FAT1 (Figure 5E). 
These findings suggest that FAT1 loss contributes to 
CTX resistance and worse prognosis in BC patients. 

 
 

 
Figure 5. Low levels of FAT1 contribute to CTX resistance. (A) Transcriptome level of FAT1 following lentiviral transfection in cell lines (MDA-MB-231, MCF-7). Both 
group #1 and #3 show significant knockdown efficiency. n=3, Error Bars: ±s.d. (B) Western blot analysis confirms FAT1 protein expression. (C) Cell proliferation assays show 
enhanced growth in FAT1-KD cells compared to control. n=5, Error Bars: ±s.d. (D) CTX drug sensitivity curves. FAT1-KD cells exhibit significantly higher IC₅₀ values, indicating 
reduced sensitivity to CTX. n=3, Error Bars: ±s.d. (E) CTX-treated BC patients with FAT1 mutations show poorer OS (P = 0.237), PFS (P = 0.380) and DSS (P = 0.287) compared 
to those without mutations (Log-rank test). 
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Figure 6. Mechanism by which FAT1 loss contributes to chemotherapy resistance. (A) GSVA shows a relative upregulation in the FAT1-Mut group (resistant) of the 
Wnt signaling pathway (red arrow) in GSVA analysis compared to the FAT1-WT (sensitive) group. (B) PPI network illustrating the interaction between CTNNB1 and FAT1. (C) 
Pearson correlation analysis. R=0.63, P＜0.0001. (D) Co-IP confirms the relationship between FAT1 and β-catenin in MCF-7. IgG was used as a negative control. (E) 
Immunofluorescence images show increased nuclear localization of β-catenin in FAT1-KO of MCF-7. Scale bar: 20 µm. (F) Immunofluorescence images show increased nuclear 
localization of β-catenin in FAT1-Mut BC-PDOs (vs. FAT1-WT BC-PDOs). Scale bar: 20 µm. 

 

FAT1 mutation upregulates the Wnt pathway 
To investigate the mechanisms by which FAT1 

regulates CTX resistance, we compared FAT1-Mut 
and FAT1-WT groups. Gene set variation analysis 
(GSVA) revealed upregulation of the Wnt signaling 
pathway in the FAT1-Mut group even before drug 
treatment (Figure 6A). The Wnt/β-catenin pathway, a 
critical regulator of development, tumor proliferation, 
and drug resistance, has been previously linked to 
FAT1 mutations [13, 14].  

β-catenin, encoded by the CTNNB1 gene, is a 
central component of the canonical Wnt signaling 
pathway [27]. Protein-protein interaction (PPI) 
analysis indicated a significant interaction between 

FAT1 and β-catenin, suggesting that FAT1 may 
modulate Wnt/β-catenin signaling through physical 
association with β-catenin (Figure 6B).  

Pearson correlation analysis showed a 
moderately strong positive correlation between FAT1 
and CTNNB1 expression (R = 0.63, P < 0.001) (Figure 
6C). Immunofluorescence and co-immunoprecipita-
tion (Co-IP) assays further confirmed the interaction 
FAT1 and β-catenin in MCF-7 cells (Figure 6D). 
FAT1-KO cells (Figure 6E) or FAT1-Mut PDOs (Figure 
6F) enhanced β-catenin nuclear translocation. These 
results support the hypothesis that loss of FAT1 
activates the Wnt/β-catenin pathway in BC, 
potentially contributing to chemoresistance. 
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Figure 7. FAT1 regulates the WNT pathway and promotes CTX resistance. (A) Schematic overview of pathway enrichment screening. (B) Pathways and gene 
alterations. CTNNB1 (red box) was downregulated after combination therapy. (C) CTNNB1 was downregulated in the FAT1-Mut group. n=3, Error bars: ±s.d. (D-E) Expression 
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levels of WNT-related genes in FAT1-Mut and FAT1-WT group before/ after combination therapy, n=3, Error bars: ±s.d. (F-G) Expression of Wnt-related genes in the FAT1-Mut 
(F) or FAT1-WT (G) group before and after using different drugs, n=3, Error bars: ±s.d. (H) Proposed model illustrating the regulatory role of FAT1. In FAT1-WT cells (left), Wnt 
signaling is tightly regulated, β-catenin is restricted from nuclear translocation. In FAT1-Mut cells (middle), loss of FAT1 leads to β-catenin stabilization and nuclear accumulation, 
activating Wnt target genes and promoting drug resistance. Combination therapy (right) partially suppresses Wnt signaling and reduces β-catenin activity, thereby alleviating 
resistance. 

 

Combination therapy overcomes drug 
resistance in FAT1-mutant patients 

To further explore how combination therapy 
overcomes drug resistance, we analyzed biological 
pathways enriched in the FAT1-Mut group after 
treatment. GO analysis revealed distinct pathways 
activated by combination therapy, including synaptic 
vesicle localization, T cell differentiation regulation in 
the thymus, and retinol metabolic processes (Figure 
7A). Notably, synaptic vesicle localization was the 
only downregulated pathway, and CTNNB1 
expression within this pathway was significantly 
reduced (Figure 7B). 

Transcriptional analysis confirmed a decrease in 
CTNNB1 expression specifically in the FAT1-Mut 
group after combination therapy, with no significant 
change in the FAT1-WT group (Figure 7C). 
Furthermore, combination therapy downregulated 
Wnt-related genes (AES, AXIN1, DVL1, GSK3A, 
LLGL1, TCF3) in the FAT1-Mut group (Figure 7D), 
while these genes remained largely unaffected in the 
FAT1-WT group (Figure 7E). Importantly, 
monotherapy did not significantly alter Wnt 
signaling, whereas combination therapy effectively 
suppressed Wnt-related gene expression in the 
FAT1-Mut group (Figure 7F, 7G).  

To sum up, these results suggest that 
combination therapy alleviates drug resistance in 
FAT1-Mut BC by downregulating the Wnt/β-catenin 
pathway. In cells with intact FAT1, Wnt signaling is 
tightly regulated, preventing β-catenin accumulation 
and maintaining treatment sensitivity. In contrast, 
loss of FAT1 disrupt this regulation results in 
β-catenin stabilization and nuclear translocation, 
which activates Wnt target genes and contributes to 
drug resistance. Combination therapy effectively 
reduces this effect by suppressing Wnt signaling, 
thereby restoring drug sensitivity (Figure 7H). 

Discussion 
Precision medicine tailor treatments to 

individual patients, moving away from the traditional 
one-size-fits-all approach [28]. Organoids as 3D 
self-organized models, closely mimic the 
physiological functions and structures of original 
organs, enhancing drug efficacy and safety 
assessments in drug screening tests (DST) [29–31]. 
PDO-based DST is critical for avoiding ineffective 
therapies, minimizing side effects, and optimizing 

time and resource usage [32–38]. Several studies have 
reported predictive accuracies of PDO-based 
DST,with reported rates exceeding 80% [39]. Notably, 
in the phase III clinical trial (CinClare) involving 
colorectal cancer patients, PDO-based DST achieved a 
predictive accuracy of 84.43%, with sensitivity and 
specificity of 78.01% and 91.97%, respectively [40]. 
These results the clinical value of PDOs in guiding 
clinical decisions, reducing adverse drug reactions, 
and alleviating patient suffering, positioning them as 
a practical and powerful bridge between research and 
clinical care in precision medicine [41–44].  

In this study, we successfully established five 
PDOs (BC1, BC26, BC27, BC29 and B32) from patients 
and performed DST with clinically approved first-line 
chemotherapy drugs, including doxorubicin, CTX, 
palbociclib, and olaparib. Due to the slow growth of 
BC27 and the inability to obtain a sufficient number of 
cells, four other PDOs (BC1, BC26, BC29 and BC32) 
were used for drug sensitivity testing. Doxorubicin is 
a cytotoxic anthracycline antibiotic widely used in BC 
treatment, leading to DNA damage and apoptosis. 
CTX belongs the class of alkylating agents, commonly 
used in combination with doxorubicin in AC-based 
regimens. As CTX is a prodrug that requires hepatic 
metabolism to generate its active molecule, PM was 
used in our DST to more accurately reflect its 
therapeutic activity. Our results exhibited sensitivity 
to doxorubicin in PDOs, supporting it as a viable 
first-line chemotherapeutic agent in BC treatment. 
Olaparib (PARPi) exploits synthetic lethality in 
BRCA-mutated tumors by blocking DNA repair 
pathways, leading to accumulation of DNA damage 
and cancer cell death [5, 45]. DST results showed that 
BC29, which harbors a BRCA mutation, exhibited 
heightened sensitivity to olaparib, confirming the 
drug’s expected efficacy and the reliability of PDO 
model. Palbociclib (CKI) is a selective inhibitor of 
cyclin-dependent kinases CDK4 and CDK6, which 
blocks cell cycle progression at the G1/S transition 
and effectively suppresses cancer cell proliferation 
[46]. We also evaluate therapeutic potential of CKI in 
BC. Based on our experimental data, BC1 and BC32 
(sensitive group) were relatively sensitive to both CTX 
and CKI, whereas BC26 and BC29 (resistant group) 
exhibited resistance to monotherapy. Prior studies 
indicate that combination therapy enhances 
anticancer efficacy by concurrently targeting multiple 
oncogenic pathways to produce synergistic or 
additive effects [47]. Building on these observations, 
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we hypothesized that combination therapy could 
yield superior therapeutic outcomes. Notably, our 
experimental results and bioinformatic analyses 
supported this hypothesis: the resistant group 
exhibited improved sensitivity following combination 
treatment. To further investigate the underlying 
mechanisms of drug resistance, we integrated 
genomic and transcriptomic data with literature 
evidence and focused our analysis on FAT1. As 
mentioned above, loss of FAT1 function has been 
shown to promote cancer progression by inducing 
epithelial-mesenchymal transition (EMT), enhancing 
stemness, and increasing metastatic potential [9]. 

CTNNB1 (β-catenin), a key effector in the 
Wnt/β-catenin pathway, regulates proliferation and 
differentiation and is involved in tumor progression 
and drug resistance [48, 49]. Specifically, Wnt ligand 
binding inhibits CTNNB1 degradation, leading to its 
accumulation and nuclear translocation, where it 
regulates genes involved in cell survival and 
proliferation. Previous studies have shown that FAT1 
interacts with β-catenin, and FAT1 loss leads to 
aberrant activation of the Wnt/β-catenin signaling 
[12, 13]. FAT1 inhibits cancer cell growth by binding 
β-catenin and preventing its nuclear localization, and 
its loss results in β-catenin stabilization and nuclear 
translocation, promoting oncogenic Wnt/β-catenin 
signaling [10,11,36]. Our experimental results further 
demonstrate that functional loss due to FAT1 
mutation contributes to CTX resistance in BC patients. 
Notably, combination therapy with CKI and CTX 
effectively overcomes this resistance, offering a 
promising therapeutic strategy. In conclusion, our 
findings establish a link between FAT1 loss and drug 
resistance in BC. FAT1 suppression activates the 
Wnt/β-catenin pathway, positioning FAT1 as a 
potential tumor suppressor and offering a novel 
therapeutic target for BC treatment.  

Moreover, immunotherapy has made significant 
strides in BC treatment, particularly in triple-negative 
breast cancer (TNBC), with promising agents such as 
immune checkpoint inhibitors (ICIs), antibody-drug 
conjugates (ADCs), and CAR T-cell therapies [50]. 
However, persistent challenges limit widespread 
application, particularly immune evasion [51]. 
Chemotherapy has been shown to induce 
immunogenic cell death, activate adaptive immune 
responses, and enhance antigen presentation, thereby 
contributing to tumor microenvironment (TME) 
remodeling. Beyond its cytotoxic effects, 
chemotherapy may also reduce TME-mediated 
resistance to tumor-infiltrating lymphocytes, 
potentially improving the efficacy of ICIs [52]. For 
example, the combination of PD-1 inhibitors such as 
pembrolizumab with platinum-based chemotherapy 

has become a first-line treatment option in advanced 
non-small cell lung cancer (NSCLC), significantly 
improving OS and PFS [53]. In treatment-resistant 
cases of gastric and pancreatic cancer, the novel 
antibody PRL3-zumab combined with chemotherapy 
has shown potential in delaying disease progression 
[54]. In TNBC, the combination of a PD-L1 inhibitor 
with nab-paclitaxel has demonstrated superior 
efficacy compared to monotherapy [55]. Accordingly, 
chemo-immunotherapy combinations are 
increasingly regarded as an effective treatment 
strategy across multiple cancer types. Meanwhile, 
understanding the mechanisms behind drug 
combinations and the role of biomarkers is essential in 
the development of effective cancer combination 
therapies. Our work not only indicate that the 
repurposing of conventional agents in combination 
with immunotherapy may elicit unanticipated 
synergistic effects, but also elucidates the underlying 
mechanisms. This combination therapy strategy could 
enhance immune responsiveness and may help 
overcome limitations associated with immunotherapy 
in solid tumors.  

Future studies will aim to determine whether 
combination treatment can suppress β-catenin nuclear 
translocation and restore chemosensitivity in 
FAT1-deficient breast cancer cells. Besides, although 
PM reflects the active form of CTX, it bypasses the 
metabolic activation process and in vivo studies may 
be needed to validate its clinical relevance. 

Material and Methods  
For studies with human subjects 

This study was approved by the Ethics 
committee of Renji Hospital, School of Medicine, 
Shanghai Jiao Tong University and the ethics number 
is KY2023-115-C. All patients were given informed 
consent for sample collection.  

Database 

cBioportal (http://www.cbioportal.org/) 

We analyzed features of FAT1 across various 
oncologic cohorts using the cBioportal database [56]. 
The mutation frequency of FAT1 was examined in the 
breast cancer cohort with 1,365 samples (MSK, Cancer 
Discovery 2022). Additionally, we analyzed FAT1 
mutations in a pan-cancer context—including 
oncoprints, cancer type summaries, mutation data, 
and survival data based on 32 selected studies 
comprising 10,967 samples from the TCGA 
PanCancer Atlas. 

UALCAN (https://ualcan.path.uab.edu/) 

The differential expression analysis of FAT1 and 



Int. J. Biol. Sci. 2026, Vol. 22 
 

 
https://www.ijbs.com 

459 

survival prognosis in breast cancer was searched 
using the UALCAN database [57]: 1) On top of the 
homepage, "TCGA analysis" option was selected; 2) 
The gene symbol FAT1 was entered in the "Enter gene 
symbol(s)" field; 3) Tumor type “Breast invasive 
carcinoma” was selected to view the differential 
expression, survival rate and associated statistical 
data. 

GEPIA2 (http://gepia2.cancer-pku.cn/#index) 

Correlation between FAT1 and CTNNB1 
expression in breast cancer was assessed using the 
GEPIA2 platform [58]: 1) On the left of the page, select 
“Correlation Analysis”; 2) “Gene A” was set to FAT1 
and “Gene B” to CTNNB1; 3) The dataset “BRCA 
Tumor” was chosen, and “Pearson” was selected as 
the statistical method.  

STRING (https://string-db.org/) 

PPI involving FAT1 were explored using the 
STRING database investigated the interactions 
between different proteins [59]: 1) Entering FAT1 in 
the “Protein Name” field and selecting "Homo 
sapiens" as the species; 2) Clicking on “Legend” to 
interpret the color-coded interaction network and 
corresponding score values. 

Methods 

Breast cancer tissue dissociation 

Surgically resected samples were immersed into 
tissue storage solution within tubes and kept on ice 
(0°C) during transport. Upon arrival at the laboratory, 
fresh tissues were transferred into a sterile dish on ice, 
where dissection tools were used to carefully remove 
fatty tissue, calcifications, blood clots, and necrotic 
tissue. Each sample was divided into four parts for 
transcriptomic sequencing, genomic sequencing, 
histological examination, and organoid establishment.  

The tissues were washed twice in ice-cold 
washing buffer containing PBS (Hyclone, SH30256.01) 
and 2% P/S (Gibco, 15070063), until the supernatant 
was clear. Subsequently, the cleaned tissues were cut 
into small pieces (1-3 mm³) and incubated with 
digestion buffer (Advanced DMEM/F12 (Gibco, 
12634010), 1 mg/mL Collagenase IV (Gibco, 
17104019), 0.1 mg/mL DNaseI (Sigma Aldrich, 
9003-98-9)). The volume of digestion buffer added 
was at least twice the volume of tissue. Pre-treated 
tissues were transferred to centrifuge tubes and 
incubated on a shaker at 37°C for 30-90 minutes, until 
most of bulk tissues had been dissociated into 
single-cell suspensions. Digestion was halted by 
adding stop buffer (Advanced DMEM/F12 
supplemented with 2% BSA; Yeasen, 36101ES), 

followed by filtration through a 40-μm cell strainer 
and centrifuged at 200×g for 5 minutes. If the cell 
pellet appeared red, it was resuspended in 1 mL RBC 
lysis buffer (Beyotime, C3702) and incubated on ice 
for 2 minutes. The cells were then washed twice with 
washing buffer. 

Organoids culture and passage 

Pre-treated cell clusters (2-3×105 cells) were 
resuspended in 10 μL ice-cold Matrigel (Corning, 
356234) in a 1.5 mL tube at a 1:1 ratio. The 
cell-Matrigel mixture was then seeded as 10 μL 
droplets onto a pre-warmed 48-well plate (Corning) 
and incubated in a humidified 37°C incubator with 
5% CO2 for 10-15 minutes to allow gelation. 
Subsequently, 250 μL of culture medium was added 
to each well. The medium was prepared according to 
previously established protocols [16, 60] and 
refreshed approximately every 3 days. Organoids 
were passaged based on density and size.  

For passaging, organoids were harvested and 
resuspended in 300 μL TrypLE (Corning, 12605028) 
by gently pipetting and incubated at 37 °C for 4-8 
minutes, with additional pipetting to dissociate cell 
clusters into single cells. After digestion, 500 μL of 
Advanced DMEM/F12 was added, and then 
centrifuged at 200×g for 5 minutes. The cell pellet was 
resuspended in ice-cold Matrigel at appreciate ratios 
(typically 1:1 to 1:6) for re-seeding. 

Organoid formation assay, growth size and 
proliferation index analysis 

For the organoid formation assay, 2×103 cells 
were mixed with 2 μL ice-cold Matrigel at a 1:1 ratio 
and seeded as domes onto a pre-warmed 96-well plate 
(Corning). Organoids were allowed to develop from 
single cells over an 8-day period, with their growth 
sizes tracked every 2 days using an optical microscope 
(Motic, AE31E). Number of organoids formed (>50 
µm) were counted using ImageJ (v.15.3), and their 
diameters were measured by Adobe Illustrator 2021.  

Proliferation index was assessed by quantifying 
the percentage of Ki67-positive cells, identified by 
detecting by the brown coloration in immunostaining 
images [61]. Images were deconvolved using the 
Colour Deconvolution for hematoxylin and DAB, 
converted to 8-bit binary images and analyzed using 
the IHC Toolbox to evaluate the ratio of Ki67-positive 
cells to total cells. All data were summarized and 
analyzed using Prism 9. 

Histology and Immunohistochemistry 

Organoids were carefully detached from the 
culture plate and embedded in low-melting-point 
agarose (Sigma Aldrich, A9045-25G). Both patient- 
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derived tissues and embedded organoids were fixed 
in 4% paraformaldehyde (LABLEAD, P4500) followed 
standard protocols, including dehydration, paraffin 
embedding, sectioning and staining. Paraffin sections 
with a thickness of 10 μm were prepared for all 
analyses. Histological and immunohistochemical 
staining were performed using Fully Automated 
Research Stainer (Leica, BOND RX) and an Integrated 
Workstation (Leica, ST5010/TS5015/CV5030), in 
accordance with the manufacturer's instructions. The 
primary antibodies involved in this study included 
ER (Abcam, ab32063, 1:500), PR (Abcam, ab16661, 
1:500), HER2 (Abcam, ab134182, 1:1000), Ki67 
(Abcam, ab16667, 1:1000). Images were acquired 
using an Olympus BX43 microscope. 

Drug screening test 

The effect of drugs on organoids were assessed 
using the cell counting kit-8 (CCK-8) assay and 
measured by OD450 values. Organoids were 
dissociated into single cells as previously described. 
Approximately 2×103 cells resuspended in 2 μL 
Matrigel and seeded into 96-well plate (Corning) with 
70 μL of culture medium for 5 days before drug 
treatment. Immediately before use, the CCK-8 
(Selleck, B34304) reagent was diluted in Advanced 
DMEM/F12 at a 1:9 ratio. After carefully discarding 
the culture medium, 100 μL freshly prepared CCK-8 
solution was added to each well. Plates were 
incubated at 37 °C for 1 hour and OD₄₅₀ values were 
measured using a microplate reader (Bio-Tek, 
Synergy HTX). After 3 days of treatment with 
different drug concentrations, cell viability was 
reassessed using the same procedure. All data were 
normalized to negative control (DMSO), with positive 
control (Puromycin) and blank control (culture 
medium only) included for comparison. The drugs 
used in this study included: Doxorubicin (Shyuany, 
25316-40-9), Olaparib (MCE, HY-10162), Palbociclib 
(MCE, HY-50767) and Phosphoramide mustard 
cyclohexanamine (active metabolite of CTX; MCE, 
HY-137316A).  

For cell lines, 2×103 cells per well were seeded 
into a 96-well plate (Corning) and cultured for 24 
hours. Before drug treatment, 100 μL CCK-8 working 
solution (1/10 volume of culture medium) was added 
and baseline OD450 values were recorded. Samples 
were then washed twice with PBS (HyClone, 
SH30256.01) and fresh culture medium containing 
respective drug concentrations was added. After 48 
hours of drug exposure, OD450 values were measured 
again and compared to baseline. Data were 
normalized to negative control (DMSO), with positive 
control (PBS only) and blank control (culture medium 
only). 

Cell viability and imaging 

Cell viability was assessed using the Calcein 
AM/PI Cytotoxicity Assay Kit (Beyotime, C2015S, 
1000×), which provided dual fluorescence staining to 
distinguish live and dead cells. Fresh working buffer 
(1×) was prepared following the manufacturer’s 
protocol. The supernatant from wells containing the 
organoids was carefully removed, followed by two 
washes with PBS. Organoids were stained with 100 μL 
of the working buffer (1×), incubated at room 
temperature for 30 minutes in the dark. After staining, 
organoids were gently washed twice with PBS and 
then 100 μL PBS was added prior to imaging. 
Fluorescence imaging was conducted using a 
fluorescence microscope (Nikon, ECLIPSE Ts2). Live 
cells were labeled with green fluorescence (Calcein 
AM), while dead cells exhibited red (PI). Fluorescence 
intensity was further quantified using ImageJ (v1.53a) 
and the plot profiles were exported using Microsoft 
Excel (v16.74). 

Whole exome sequencing (WES) analysis 

DNA extraction  

DNA was extracted from all samples using 
Genomic DNA Purification Kit (EZB, B0007), 
following manufacturer’s protocols supplied with the 
kit. DNA purification and concentration were 
assessed by NanoDrop spectrophotometers (Thermo, 
2000c). 

Library construction and sequencing  

Library preparation and sequencing were 
performed by Mingma Technologies Co., Ltd 
(Shanghai, China). A total of 200 ng genomic DNA 
was fragmented using the Agilent’s SureSelect 
Enzymatic Fragmentation Kit for ILM, targeting an 
average fragment size of 150-200 bp. Libraries were 
prepared with the SureSelect XT HS2 Reagent Kit 
(Agilent), and adapter-ligated DNA fragments were 
amplified using Herculase II Fusion DNA Polymerase 
(Agilent). Pre-capture libraries containing exome 
sequences were captured with SureSelect HS Human 
All Exon V8 (Agilent). Library concentration was 
quantified using a Qubit 3.0 fluorometer dsDNA HS 
Assay (Thermo Fisher Scientific), and size distribution 
was analyzed using the Agilent Bioanalyzer 4200 
(Agilent). Paired-end sequencing was performed 
using the NovaSeq 6000 S4 Reagent Kit v1.5 (300 
cycles) on the Illumina NovaSeq 6000 platform 
(Illumina, San Diego, USA). 

Data analysis  
Raw sequencing data underwent quality control 

using FastQC (v0.11.8). Adapter trimming was 
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conducted with Trim Galore (v0.5.0). Clean reads 
were aligned to the human reference genome GRCh38 
using Burrows-Wheeler Alignment with maximal 
exact matches (BWA-MEM) (v0.7.17). Alignment 
statistics were summarized using MultiQC (v1.7) [62]. 
SAMtools (v0.1.9) was utilized for sorting alignment 
files and indexing BAM files [63]. Data preprocessing 
followed the GATK Best Practices using Genome 
Analysis ToolKit (GATK, v4.1.1.0) [64], including base 
quality score recalibration and variant calling. 
Mutational signature analysis was performed with 
MutationalPatterns (v3.14.0) to calculate the optimal 
contribution of COSMIC signatures and determine 
the genomic context for all somatic SNVs in both 
tumor tissues and PDOs [15]. 

Bulk RNA sequencing analysis 

RNA extraction  

Total RNA was extracted using the RNeasy Mini 
Kit (Qiagen, 74106) following manufacturer’s 
instruction. RNA concentration and purity were 
assessed using a NanoDrop spectrophotometers 
(Thermo,2000c). Samples were stored at -80 °C for 
downstream applications, avoiding freeze-thaw 
cycles.  

Library construction and sequencing  

Library construction and sequencing were 
conducted by Mingma Technologies Co., Ltd 
(Shanghai, China). To construct sequencing libraries, 
500 ng of high-quality RNA (OD260/280=1.9~2.0, 
RIN≥ 8) was required. mRNA-focused sequencing 
libraries were prepared from total RNA using the 
VAHTS mRNA-seq v3 Library Prep Kit (VAHTS, 
NR611). PolyA mRNA was isolated with 
oligo-dT-attached magnetic beads and fragmented. 
First-strand cDNA was synthesized using reverse 
transcriptase and random primers, followed by 
second-strand synthesis. The cDNA was then 
end-repaired, phosphorylated, and had 'A' bases 
added as per Illumina's protocol. Illumina sequencing 
adapters were ligated to both ends of the cDNA 
fragments. After PCR amplification, target fragments 
(200–300 bp) were purified using CleanNGS 
(CleanNA-CNGS-0500). Post-library construction was 
quantified using a Qubit 3.0 fluorometer dsDNA HS 
Assay (Thermo Fisher Scientific), and size distribution 
was analyzed using an Agilent BioAnalyzer (Agilent). 
Sequencing was performed on an Illumina system 
following the manufacturer’s protocols. 

Data analysis  

RNA-sequencing data analyses and visualization 
were performed in R (v4.2.3). Differentially expressed 

genes (DEGs) between drug-sensitive and 
drug-resistant PDOs were identified by the edgeR 
package (v3.26.8) [65]. DEGs were filtered using 
thresholds of FDR ≤ 0.01 and FC ≥ 2), and mapped to 
cancer-related signaling pathways. Gene set 
enrichment analysis (GSEA) and gene ontology (GO) 
enrichment were performed by GSEA (v1.2) with 
gene sets obtained from MSigDB (v7.5.1) [66–68]. 
Gene set variation analysis (GSVA) (v1.46.0) was used 
to assess pathway activation differences between the 
resistant and the sensitive group [69].  

Cell culture, passage and transfection 
Human breast cancer cells, MCF-7 (RRID: 

CVCL_0031; female) and MDA-MB-231 (RRID: 
CVCL_0062; female) were kindly provided from Dr. 
Aina He, Sixth People’s Hospital Affiliated to 
Shanghai Jiaotong University School of Medicine. 
Short tandem repeat (STR) genotyping of cell lines 
was completed by Shanghai Biowing Biology (Shang-
hai, China, Report number: NO.20220707-STR05).  

MCF-7, MCF-7 derived cells (MCF-7 FAT1#1/ 
2/3 and blank), MDA-MB-231 and MDA-MB-231 
derived cells (MDA-MB-231 FAT1#1/2/3 and blank) 
were maintained in RPMI 1640 (Yeasen, 41402ES76), 
supplemented with 10% FBS (Procell, 164210), 1% P/S 
(Gibco, 15070063). Cells were cultured in incubator 
(Thermo) at 37°C with 5% CO2.  

Cell Passaging was performed using standard 
method. Briefly, cells at high confluence (80%-90%) 
were digested with 0.25% Trypsin-EDTA (Yeasen, 
40127ES60) for 3 minutes at 37°C, and then stopped by 
adding culture medium. The cell suspension was 
transferred into 15 mL tubes (Corning) and 
centrifuged at 400×g at room temperature for 5 
minutes. Cells were then passaged at a 1:3 to 1:4 ratio 
in 10 cm culture dishes (Corning). 

For stable knockdown of FAT1, lentiviruses were 
ordered from GeneChem (Shanghai, China), 
constructed in GV493 (hU6-MCS-CBh-GFP-IRES- 
Puromycin) vectors. Before transfection, cells were 
seeded in 6-well plates (Corning) for 24 hours under 
standard 2D culture conditions until reaching 
20%-30% confluence. The next day, 1 mL of virus 
infection solution containing virus (sh1/2/3 and 
blank) and 40 µL HitransG P (25×, GeneChem) was 
prepared in anti-free culture medium respectively. 
The virus volume was calculated using the formula: 
Virus volume = (MOI × Number of cells) / Virus titer 
(1×108 TU/mL). The MOI was set to 20 for MCF-7 
cells and 10 for MDA-MB-231 cells. Control wells 
received medium containing only 40 μL HitransG P. 
After 16 hours of incubation, the viral supernatant 
was removed and replaced with 1 mL of fresh culture 
medium. After 72 hours, green fluorescent protein 
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(GFP) was observed under a microscope (Nikon, 
ECLIPSE Ts2) to confirm successful transfection. Cells 
exhibiting healthy morphology and approximately 
80% GFP positivity were selected for puromycin 
selection using 2 μg/mL puromycin (Sangon, 
E607054), until control cells were almost eliminated. 
Successfully established cell lines were maintained for 
subsequent experiments. 

Cell proliferation assay 
Cell viability was assessed using the CCK-8 

assay (Selleck, B34304) as previously described. 
Briefly, all cell lines (8×102 / per well) were seeded in 
96-well plates (Corning) and cultured in full medium. 
After 24 hours, 100 μL of fresh CCK-8 working 
solution (1/10 volume of culture medium) was added 
and the plates were incubated at 37°C for 1 hour. 
After acquiring OD450 values, the cells were washed 
with PBS (HyClone, SH30256.01) containing 2% P/S 
(Gibco, 15070063) and fresh culture medium was 
added for further culture. Cell viability was tracked 
every 2 days on days 1, 3, 5 and 7. 

Western blotting 
Cells were lysed by RIPA (Beyotime, P0013C) 

supplemented with protease (Bimake, B14001) and 
phosphatase (Bimake, B14001) inhibitor cocktail. 
Proteins concentrations were quantified with a BCA 
protein assay kit (Beyotime, P0012S) and samples 
were diluted in loading buffer (Beyotime, P0286) to a 
final concentration of 2 µg/µL.  

Equal amounts of protein were loaded onto 6% 
SDS-PAGE gels (Epizeme, PG110) for FAT1 and 10% 
gels (Epizeme, PG112) for CTNNB1. After performing 
electrophoresis, separated proteins were transferred 
to 0.22 µm PVDF membranes (Merck Millipore). The 
membranes were blocked with protein free rapid 
blocking buffer (Epizyme, PS108P) for 10 minutes at 
room temperature, followed by overnight incubation 
at 4 °C with the following primary antibodies: 
GAPDH (Abcam, ab291253, 1:10000), FAT1 (Abcam, 
ab190242, 1:2000) and CTNNB1 (Abcam, ab32572, 
1:2000). Membranes were washed three times with 
PBST (PBS containing 0.1% Tween-20), then incubated 
for 1 hour at room temperature on a shaker with the 
corresponding second antibodies: Anti-rabbit, 
(Beyotime, A0208, 1:2000); Anti-mouse, (Beyotime, 
A0216, 1:2000). All antibodies were diluted in 
universal antibody diluent (Epizyme, PS119). Finally, 
the membranes were exposed by enhanced 
chemiluminescence solution (Thermo Fisher 
Scientific) and images were captured with a Gel Doc 
EZ Imager (BIO-RAD). Analysis of images were 
performed using Image Lab software (BIO-RAD). 

Co-immunoprecipitation (Co-IP) 
Co-IP was performed to assess the interaction 

between FAT1 and CTNNB1. Collected cells were 
lysed by cell lysis buffer for Western and IP 
(Beyotime, P0013). The 50 μL of Protein A/G 
magnetic beads (Selleck, B23201) were incubated with 
CTNNB1 antibody (Abcam, ab32572,1:30) to 
immunoprecipitate the target complex. The 
antibody-conjugated beads were then incubated with 
cell lysates overnight at 4 °C. Immunoprecipitates 
were eluted by boiling in SDS loading buffer 
(Beyotime, P0286) and separated by SDS-PAGE 
followed by Western blotting. 

Immunofluorescence 
For organoids, the slides were prepared as 

described in the Histology and Immunohistochemistry 
methods section. Sections were blocked with 5% BSA 
(Yeasen, 36101ES) for 1 hour at room temperature. 
Primary antibodies (beta catenin, abmart, T53523S; 
E-cadherin, abmart, TA0131S) were applied and 
incubated overnight at 4°C. The next day, sections 
were washed with PBS and incubated with secondary 
antibodies for 1 hour at room temperature in the dark. 
Nuclei were counterstained with DAPI (1:1000, 
Invitrogen, D1306), and fluorescence images were 
acquired using a Leica laser scanning confocal 
microscope. 

For cell lines, cells were seeded on coverslips in a 
12-well plate (Corning) at a density of 2×103 cells per 
well. Next day, cells were fixed with 4% 
paraformaldehyde (LABLEAD, P4500) for 15 minutes 
and permeabilized with 0.5% Triton X-100 (Sigma 
Aldrich, 9036-19-5) for 20 minutes. The fixed cells 
were then blocked with 5% BSA (Yeasen, 36101ES) for 
1 hour at room temperature. Primary antibodies 
(1:250, abcam, ab32572) were added and incubated 
with the cells overnight at 4°C. Subsequently, 
secondary antibodies were incubated at room 
temperature for 1 hour in the dark. Finally, the 
nucleus was stained with DAPI (1:1000, Invitrogen, 
D1306) and images were captured using a laser 
scanning confocal microscope (Leica). Image 
visualization was performed using SlideViewer 
software (CaseViewer 2.5, 64-bit version). 

Quantitative real-time reverse transcription 
PCR (qRT-PCR) 

Total RNA was extracted using the RNeasy Mini 
Kit (Qiagen, 74106). Reverse transcription was 
performed using the cDNA Synthesis Kit 
(EZBioscience, A0012-R2). Subsequently, qRT-PCR 
was performed using SYBR Green qPCR Master Mix 
(A0012-R2, EZB) on the QuantStudio™ 7 Flex 
Real-Time PCR System (ABI-Q7, Thermo). Relative 
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gene expression levels were calculated using the 2-ΔΔCt 
method was used to analyze the relative changes, 
with GAPDH as the control. Primer sequences used in 
this study are listed in Table 1. 

 

Table 1. Primer sequences of qRT-PCR used in this study. 

Gene Forward (5’-3’) Reverse (5’-3’) 
FAT1 CATCCTGTCAAGATGGGTG

TT 
TCCGAGAATGTACTCTTCAGC
TT 

CTNNB
1 

AAAGCGGCTGTTAGTCACT
GG 

CGAGTCATTGCATACTGTCCA
T 

AES ACCCCAGCAACTCAAATTC
AC 

AAGCCGTAGGACATCTCGTA
G 

AXIN1 GGTTTCCCCTTGGACCTCG CCGTCGAAGTCTCACCTTTAA
TG 

DVL1 GAGGGTGCTCACTCGGATG GTGCCTGTCTCGTTGTCCA 
GSK3A GGAAAGGCATCTGTCGGGG GAGTGGCTACGACTGTGGTC 
LLGL1 CTGTCACACAGATGCACTT

CT 
GCCATTATGGTGGACAATCTC
C 

TCF3 ACGAGCGTATGGGCTACCA GTTATTGCTTGAGTGATCCGG
G 

TCF7L1 TCGTCCCTGGTCAACGAGT ACTTCGGCGAAATAGTCCCG 
GAPDH GGAGCGAGATCCCTCCAAA

AT 
GGCTGTTGTCATACTTCTCAT
GG 

  
 

Statistical analysis 
Statistical analyses were performed using 

GraphPad Prism 9. To evaluate drug sensitivity, cell 
viability data from dose–response experiments were 
used to calculate half-maximal inhibitory 
concentration (IC₅₀) values. The OD₄₅₀ values were 
normalized to the negative control (DMSO), and the 
data were fitted using a nonlinear regression model. 

For comparisons between two groups, a 
two-tailed t-test was applied. For multiple group 
comparisons, one-way ANOVA followed by Tukey’s 
post hoc test was used. Differences were statistically 
significant at P < 0.05 and significance values are 
indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P 
< 0.0001. 
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Gene set enrichment analysis; FAT1-WT: FAT1 
wild-type; FAT1-Mut: FAT1 mutant; FAT1-KD: FAT1- 

Knowdown; OS: Overall survival; PFS: 
Progression-free survival; DSS: Disease-specific 
survival; PPI: Protein-protein interaction; GSVA: 
Gene set variation analysis; DST: Drug screening tests; 
qRT-PCR: Quantitative real-time reverse transcription 
PCR. 
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