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Abstract 

Monocyte–macrophage plays a central role in innate immunity, tissue homeostasis maintenance, and 
disease progression. These phagocytes, which originate from blood monocytes or embryonic 
sources, are imperative for inflammatory responses, tissue repair, and bone remodeling. In 
orthopedic diseases, including osteoarthritis, rheumatoid arthritis, osteoporosis, and fractures, 
changes in histone acetylation are key to regulating macrophage gene expression, polarization, 
differentiation into osteoclasts, and pathological bone remodeling. Histone acetylation (mediated by 
histone acetylases) and deacetylation (mediated by histone deacetylases) directly influence 
important transcription factors in the monocyte–macrophage system by dynamically modulating 
chromatin accessibility. This review systematically examines the epigenetic network involving 
histone acetylation and deacetylation monocyte–macrophage, exploring its translational potential in 
bone-related diseases. 
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Introduction 
As a key component of innate immunity, the 

monocyte–macrophage system plays a dual role in the 
pathophysiology of orthopedic diseases. This system 
not only regulates bone balance via 
osteoclastogenesis, a process involving the specific 
differentiation of bone marrow–derived monocytes 
(BMDM), but also maintains typical macrophage 
features that facilitate inflammatory responses, repair, 
and homeostasis. Recent research suggests that its 
function is closely linked to epigenetic regulation[1, 
2]. Histone acetylation considerably affects 
macrophage-mediated inflammatory cytokine 
secretion[3], osteoclast (OC) differentiation, and bone 
metabolism balance by dynamically modifying the 
chromatin structure. The imbalance between 
osteoporosis (OP) and fracture healing is often 

accompanied by excessive activation of OCs, which 
are derived from the monocyte–macrophage system 
and depend on histone acetylation regulated by 
enzymes such as ATP-citrate lyase (ACLY). In 
osteoarthritis (OA) and rheumatoid arthritis (RA), the 
proinflammatory phenotype of the synovial 
macrophages (M1) is directly related to increased 
acetylation levels of the tumor necrosis factor α 
(TNF-α) and interleukin 1β (IL-1β) promoter 
regions[4]. Abnormal histone deacetylase (HDAC)- 
mediated histone deacetylation may exacerbate 
inflammatory bone destruction in ankylosing 
spondylitis (AS)[5]. While targeting histone 
acetylation, such as with HDAC inhibitors, has 
demonstrated potential for modulating inflammation 
and aiding repair in some orthopedic disease models, 
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the cell-specific mechanisms and safety of clinical use 
remain to be thoroughly examined. This article 
reviews the histone acetylation regulatory network 
within the monocyte–macrophage system, exploring 
its molecular mechanisms and therapeutic potential 
for osteoporosis (OP), osteoarthritis (OA), rheumatoid 
arthritis (RA), and bone repair. The goal is to offer a 
new perspective for precise intervention in orthopedic 
diseases. 

1. Classification and function of histone 
acetyl transferases (HATs) and 
deacetylases (HDACs) 

In recent years, the role of epigenetic regulation 
(including histone modification, DNA methylation, 
and non-coding RNA) in bone homeostasis has been 
gradually revealed[6, 7]: Histone modifications such 
as H3K27 demethylase KDM6B[8] activate osteogenic 
genes BMP2/HOXC6, and H3K9me3 inhibits SOX9, 
leading to cartilage degeneration[7]. DNA 
methylation promoted osteogenic differentiation 
through RUNX2/OSX promoter demethylation[9], 
while SOST hypermethylation or receptor activator of 
NF-κB ligand (RANKL) hypomethylation regulated 
bone formation and resorption, respectively[10]. 
Non-coding RNAs such as miR-204/211[11] inhibit 
RUNX2, lncRNA HOTAIR/DANCR inhibits 
osteogenic genes through the PRC2 complex[12], and 
MIAT promotes osteogenic differentiation through 
the miR-150/AKT axis[13]. Despite the 
spatiotemporal specific or bidirectional regulation 
(e.g., contradictory effects of H3K9me3[14] at different 
stages of osteogenic differentiation), targeting 
epigenetic mechanisms (e.g., HDAC inhibitors, 
miR-214 antagonists) has demonstrated therapeutic 
potential in preclinical models, suggesting their 
translational potential in orthopedic diseases. Among 
them, histone acetylation and deacetylation 
dynamically change the chromatin conformation and 
regulate the spatiotemporal specificity of gene 
transcription, which has become a key switch in the 
regulation of bone homeostasis[15]. 

The dynamic balance between histone 
acetylation and deacetylation is the core mechanism 
of epigenetic regulation [FIGURE 1]. Acetyl-CoA is 
the main acetyl donor, which regulates the chromatin 
structure and metabolic enzyme activity by 
transferring acetyl groups to lysine residues of histone 
or non-histone proteins through histone 
acetyltransferases (HATs/KATs). Its production 
pathways include glycolysis, fatty acid β-oxidation, 
and amino acid catabolism[16], whereas nuclear 
ATP-citrate lyase-mediated acetyl-CoA synthesis[17] 
is essential for histone acetylation in pluripotent stem 

cells. The acetylation level is regulated by metabolic 
status: the abundance of nutrient substrates (e.g., 
glucose, glutamine) affects acetyl-CoA 
production[18], and AMPK signaling[19] regulates 
the deacetylation activity through the 
phosphorylation of HDACs. HATs and HDACs can 
be assigned to different families in accordance with 
their structural characteristics, catalytic mechanism, 
and subcellular localization, as well as play specific 
regulatory roles in OC differentiation. Notably, the 
dysregulation of histone acetylation modification is 
disease-specific. For example, the HDAC6 expression 
is significantly upregulated in monocytes from OP 
patients[20], whereas in OA subchondral bone, OCs, 
and resident macrophages may activate the 
acetylation of the NF-κB promoter to release 
proinflammatory factors such as IL-6 and TNF-α via 
HATs[21] aggravated the joint inflammatory 
microenvironment. These findings suggest that 
targeting HATs/HDACs may enable precise 
intervention of the monocyte–macrophage system by 
restoring the epigenetic homeostasis. Presently, a 
variety of HDAC inhibitors, such as SAHA and 
Tubastatin A, have exhibited osteoprotective effects in 
preclinical models[22, 23], albeit their tissue selectivity 
and safety warrant further optimization. 

1.1 Classification and function of HATs 
HATs (“Writers”) facilitate the binding of 

transcription factors to DNA by catalyzing acetylation 
of the lysine residues in histone tails and neutralizing 
positive charges to relax the chromatin structure[24]. 
Based on the domain characteristics, HATs can be 
mainly divided into the following families: 

1.1.1 GNAT family (GCN5-related N- 
acetyltransferases) 

The GNAT family members (e.g., GCN5, PCAF) 
preferentially acetylate histone H3K9 and H3K14 sites 
through conserved acetyl-CoA binding and substrate 
recognition domains[25]. Past studies have reported 
that GCN5 (KAT2A) promotes the differentiation of 
macrophages into a proinflammatory phenotype (M1) 
through epigenetic reprogramming, secreting 
inflammatory factors such as TNF-α and IL-6, which 
aggravates the pathological process of RA and OA. 
The inhibition of the GCN5 activity can reduce 
inflammatory bone destruction[26]. Reduced PCAF is 
manifested as impaired OC differentiation and 
decreased bone resorption activity, and this 
mechanism is related to the transcriptional inhibition 
of OC promoting transcription factors such as 
NFATC1[27]. 
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1.1.2 MYST family (MOZ, YBF2/SAS3, SAS2, TIP60) 

MYST family members (e.g., Tip60, MOF) 
mediate the acetylation activity through the MYST 
domain[28]. In inflammation and immune regulation, 
TIP60 can enhance the expression of TNF-α, IL-6, and 
other proinflammatory factors through acetylation of 
the P65 subunit of NF-κB, promote the polarization of 
M1 macrophages, and aggravate the inflammatory 
response of OA and RA. Scaffold proteins containing 
bromodomain and PHD finger, such as BRPF, can 
recruit MYST family to specific chromatin regions by 
recognizing acetylated histone marks, thereby 
regulating the transcriptional activity of related genes 
during OC differentiation. The selective inhibition of 
bromodomain protein can significantly block 
RANKL-induced OC differentiation, thereby 
indirectly suggesting that the MYST family may affect 
this process through acetylation modification[29]. 

1.1.3 P300/CREB-binding protein (CBP) family 

The HAT/CBP and its closely related P300 
protein, because of their considerable sequence 
homology and functional overlap and cooperation, 
are often referred to as a single entity (CBP/P300)[30], 
which mainly acetylates H3K18 and H3K27 sites[31]. 
Past studies have demonstrated that P300/CBP may 
regulate OC differentiation and bone resorption 
activity through multiple mechanisms: 1) as a 

coactivator, its acetyltransferase activity enhances the 
transcriptional activity of NFATC1-AP-1 complex and 
promotes the expression of OC-specific genes such as 
ACP5 and CTSK[32]; 2) upregulate the expression of 
P300/CBP in response to inflammatory signals such 
as IL-17A through the STAT3/miR-7-5p axis and 
synergistically amplify the microenvironment 
promoting OC differentiation[33, 34]; 3) upregulation 
of P300 may aggravate RANKL-NF-κB signaling and 
metabolic reprogramming such as HIF-1α-mediated 
glycolysis[35], thereby accelerating the bone loss. 
Selective inhibitor CBP30 can block the function of the 
bromodomain of P300/CBP and inhibit OC activity, 
suggesting that targeting P300/CBP may be a 
potential strategy to intervene in bone resorption[33]. 

1.2 Classification and function of HDACs 
HDACs (“Erasers”), which restore the chromatin 

density by removing the histone acetyl groups, are 
classified into four classes based on cofactor 
dependence and sequence homology: 

1.2.1 Classical HDACs (class I, II, IV) 

Class I HDACs (HDAC1/2/3/8) are enriched in 
the nucleus and participate in global chromatin 
modification[36]. For example, the primary role of 
HDAC1 in OCs is to act as a co-repressor. HDAC1 
was recruited to the promoter regions of genes such as 

 

 
Figure 1: The changes of partial histone acetylation sites regulate gene expression and affect the biological effects of monocyte-macrophage. 
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NFATC1 and OSCAR to repress their expression[37]. 
The HDAC2 expression is increased during OC 
differentiation. The HDAC2 expression is increased 
during the differentiation of bone marrow-derived 
precursor OCs induced by nuclear factor-κB ligand 
(RANKL) receptor activator[38]. Past studies have 
demonstrated that the knockdown of HDAC2 in OCs 
not only inhibits OC differentiation but also prevents 
actin ring formation, fusion, and OC activity. In 
addition, HDAC2 promotes OC differentiation by 
activating AKT, and AKT phosphorylation and 
FOXO1 inactivation act as negative regulators of OC 
differentiation[38]. The role of HDAC3 is complex and 
contradictory. The inhibition of HDAC3 can inhibit 
OC differentiation and OC marker genes NFATC1, 
CTSK, and DC-STAMP[39]. Meanwhile, HDAC3 
promotes M1 polarization by inhibiting anti- 
inflammatory gene expression and activating NF-κB, 
whereas the knockdown of HDAC3 enhances the M2 
marker expression and bone healing[40, 41], and the 
loss of 50% lipopolysaccharide (LPS)-induced 
inflammatory gene expression due to the deficiency of 
IFN-β/Stat1 pathway[42]. Class II HDACs 
(HDAC4/5/6/7/9/10) can shuttle between the 
nucleus and cytoplasm[43]. The knockdown of 
HDAC4 in OCs led to enhanced OC gene 
differentiation and upregulation[23]. HDAC3 and 
HDAC7 have opposite effects on OC differentiation. 
The inhibition of HDAC3, similar to HDAC inhibitors, 
inhibits OC differentiation[44], whereas the inhibition 
of HDAC7 accelerates OC differentiation[39] and the 
overexpression of HDAC7 in mouse bone marrow–
derived macrophages (BMMs) inhibited OC precursor 
(OCP) fusion by inhibiting the MITF transcriptional 
activity[45]. HDAC7 plays a different role in 
macrophage inflammation, as reflected in the 
amplified TLR signaling through the HIF-1α pathway 
and the promotion of the inflammatory response[46]. 
HDAC9 reduces osteoclastogenesis by 
downregulating the RANKL expression while 
enhancing the release of anti-inflammatory factors 
such as IL-10 through the inhibition of M1 
polarization and the promotion of M2 phenotype[47]. 
Class IV HDAC11 inhibits OC differentiation and 
exerts anti-inflammatory effects indirectly by 
regulating the expression of IL10[48, 49]. 

1.2.2 Class III HDACs (Sirtuin family) 

Sirtuins (SIRT1-7) depend on NAD⁺ to 
participate in energy metabolism and stress response. 
SIRT1 inhibits OC differentiation by deacetylating 
NF-κB P65 and FOXO family proteins such as 
FOXO1/3/4[50] and inhibiting the release of TNF-α 
and IL-6, reducing the inhibition of inflammation on 
osteoblasts (OBs)[51, 52], and activating PPARγ, 

inducing M2 phenotype, and secreting transforming 
growth factor β (TGF-β), IGF-1, and other pro-repair 
factors. Its agonist, resveratrol, dose-dependently 
alleviated bone loss in a postmenopausal OP 
model[53]. The loss of SIRT3 increased the expression 
of OC gene markers OSCAR, NFATC1, and 
ATP6V0D2[54], suggesting that SIRT3 is a negative 
regulator of OC differentiation. Metabolic factors and 
REDOX signaling intersect with epigenetic regulation 
in OCs. For example, reagents that modulate cellular 
NAD+ levels can affect the activity of sirtuins, which 
are not only essential for deacetylation but also act as 
metabolic sensors. The activation of deacetylases such 
as SIRT1 is associated with enhanced OB 
differentiation and reduced OC production, linking 
the metabolic status to epigenetic regulation[55, 56]. 
Future therapeutic strategies may incorporate 
metabolic interventions, such as NAD+ precursor 
supplementation, in combination with HDAC 
inhibitors or HAT activators, so as to achieve a more 
comprehensive restoration of bone homeostasis. 

1.3 Classification and function of the 
bromodomain 

The bromodomain proteins act as epigenetic 
“Readers” that recognize acetylated lysines in 
histones and transcribed proteins. Bromodomain is 
the only specialized domain that specifically binds to 
acetylation marks[57] and plays an important role in 
chromatin-based cellular processes, including gene 
transcription and chromatin remodeling. BET family 
members (BRD2/3/4/BRDT), such as BRD4, promote 
the phosphorylation of RNA polymerase II by 
recruiting CDK9 kinase, which drives the expression 
of proliferation/inflammation-related genes such as 
c-MYC[58]. The knockdown of BET inhibited the 
expression of proinflammatory cytokine-induced 
catabolic factors[59]. BRD4 promoted RANKL- 
induced OC differentiation and bone resorption by 
binding to acetylated histones in the promoter regions 
of NF-κB, NFATC1, and FOS and enhancing their 
transcriptional activity[60]. In contrast, BRD9 
negatively regulates OC differentiation by activating 
the FOXP1-STAT1-IFNβ-signaling axis, and its 
agonist alleviates steroid-induced osteonecrosis of the 
jaw and acute bone loss[61]. At the level of 
inflammatory macrophages, bromodomain- 
containing proteins regulate the balance of M1/M2 
polarization of macrophages by recognizing histone 
acetylation. BRD4 binds to acetylated histones in the 
promoter regions of proinflammatory genes (TNF-α 
and IL-6), amplifies NF-κB signaling, and promotes 
M1 polarization (i.e., a proinflammatory phenotype). 
The BET inhibitor could block this pathway and 
inhibit the inflammatory response[62]. Bromodomain 
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proteins affect the JAK/STAT, HIF-1, and other 
pathways through epigenetic reprogramming, 
ultimately determining the metabolic phenotype and 
function of macrophages[63]. 

1.4 Synergistic and antagonistic regulatory 
networks of HATs/HDACs 

HATs and HDACs interact through complex 
epigenetic regulatory mechanisms and jointly 
regulate gene expression. The competitive binding of 
P300/CBP to HDAC3 can affect the activity of 
transcription factors such as NFATC1, thereby 
regulating the expression of inflammation-related 
genes. This mechanism plays an important role in OC 
differentiation and the pathogenesis of OA[64]. Under 
the pathological conditions of inflammatory bone 
disease, functional imbalance of HATs and HDACs 
can lead to abnormal release of inflammatory factors. 
HATs promote the expression of proinflammatory 
factors such as IL-6 and TNF-α by acetylating the κB 
promoter, exacerbating the joint inflammatory 
microenvironment[65]. In addition, the abnormal 
activation of HDACs inhibits the expression of 
anti-inflammatory genes through deacetylation, 
which further aggravates the inflammatory response. 
HDAC inhibitors such as TSA and SAHA can reduce 
the expression of inflammatory factors and modulate 
inflammatory responses by inhibiting the activity of 
NF-κB transcription factors in mouse models[66]. 

1.5 Function of HATs and HDACs in 
non-histone protein modifications 

Although histone acetylation governs the 
“readability” of the genome, the acetylation of 
non-histone proteins governs the direct activity, 
stability, and interaction of the proteome itself. With 
thousands of non-histone proteins now identified as 
targets for acetylation, this post-translational 
modification is recognized as a major regulatory 
mechanism comparable in scope to phosphorylation. 
Acetylation of the same protein may have different 
effects, such as activation, inhibition, or no effect, 
depending on the site, which warrants experimental 
verification[67]. A prime example of non-histone 
acetylation’s role is the modification of NFATC1. This 
acetylation event is critical for NFATC1’s 
transcriptional activity[68], and HDAC5 deacetylates 
and inhibits it. Although the functions of non-histone 
modifications are important, the mechanism, specific 
targets, and functional consequences of non-histone 
modifications in these processes remain unclear, and 
the related studies are scarce. Further research is thus 
needed to clarify the common and individual roles of 
non-histone acetylation modifications in gene 
transcription regulation and protein function changes 

in order to form a systematic theory. 

2. The regulatory network of histone 
acetylation homeostasis and OC (OC) 
differentiation 
2.1 The staged dynamic process of OC 
formation 

OCs originate from hematopoietic stem cells 
(HSCs) in the bone marrow, and their differentiation 
process is strictly spatiotemporally regulated. In the 
bone marrow microenvironment, HSCs are driven by 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF) and macrophage colony-stimulating factor 
(M-CSF) to differentiate into the monocyte–
macrophage cell line[69, 70]. Monocytes bind to 
RANKL, secreted by OBs or stromal cells via the 
RANK receptor, to trigger downstream signaling. 
They then differentiate into OCPs, which fuse to form 
multinucleated OCs and release osteolytic enzymes, 
such as tartrate-resistant acid phosphatase (TRAP) 
and cathepsin K (CTSK). These precursors ultimately 
mature into functional OCs.[71]. 

2.2 Core signaling pathways of OC 
differentiation 

The RANKL/RANK/NF-κB pathway is the 
main driver of OC differentiation. RANKL activates 
RANK and recruits the IκBα kinase (IKK) complex via 
TRAF6 (TNF receptor-associated factor 6), which 
causes phosphorylation and degradation of IκB 
protein, releasing NF-κB into the nucleus to initiate 
transcription of target genes[72]. Of these, NFATC1, a 
pertinent transcription factor, forms a positive 
feedback loop via the synergistic action of NF-κB and 
AP-1 (C-FOS/C-JUN). This loop drives the expression 
of OC-specific genes, such as matrix 
metalloproteinase 9 (MMP9), cathepsin K (CTSK), and 
acid phosphatase 5(ACP5)[73]. In addition, the MAPK 
(ERK/P38) and PI3K-AKT pathways amplify 
differentiation signals by regulating NFATC1 stability 
and cell survival signals[74]. RANKL can induce 
NFATC1 acetylation and enhanced stability via 
HATs. HATs, such as P300 and PCAF, can acetylate 
NFATC1 under RANKL stimulation, thereby 
stabilizing the NFATC1 protein, enhancing its 
transcriptional activity, and promoting OC 
differentiation. HDAC inhibitors increase 
RANKL-mediated acetylation of NFATC1, whereas 
HDAC5 overexpression reduces its acetylation, 
stability, and transcriptional activation activity. These 
findings demonstrate that the balance of HAT and 
HDAC activity is crucial for regulating NFATC1 
levels[75]. 
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Figure 2: The scheme of roles of histone acetylases/deacetylases in different stages of osteoclast differentiation. 

 
2.3 The dynamic regulation of histone 
acetylation/deacetylation during 
differentiation 

The proper execution of osteogenesis requires 
the dynamic regulation of chromatin structure to 
precisely control gene expression programs at various 
stages of differentiation. This dynamic regulation is 
predominantly achieved via the reversible action of 
HAT and HDAC, and this epigenetic modification is 
temporally and spatially regulated during OC 
differentiation to ensure adequate cellular function 
and homeostasis [FIGURE 2]. 

2.3.1 Early stage: activation of NFATC1 by 
HATs/HDACs 

During the transition of monocytes to OCPs, 
HATs stimulate the transcription of OC promoting 
genes by opening the chromatin structure. For 
instance, P300/CBP regulates OC differentiation and 

bone resorption activity via the acetylation of histone 
H3K18 and H3K27[27, 76]. Acetylation events in the 
promoter regions of OC markers enhance the 
transcription of genes such as NFATC1 (a master 
regulator driving OC generation) and other 
OC-specific genes[14, 77]. By contrast, class II HDACs 
(such as HDAC4) inhibit NF-κB activity via 
deacetylation, and their knockdown results in the 
excessive differentiation of OCs[39]. 

2.3.2 Mid stage: acetylation modification regulates cell 
fusion and migration 

During the nucleation stage of OCPs, no studies 
have reported that HATs/HDACs are directly related 
to the fusion-related genes DC-STAMP and 
OC-STAMP, but NFATC1 acts as an upstream factor 
to promote fusion-related genes. Furthermore, the 
overexpression of HDAC7 in mouse BMMs inhibited 
OCP fusion by inhibiting MITF transcriptional 
activity[45]. HATs/HDACs may exert an indirect 
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effect on DC-STAMP and OC-STAMP, which 
warrants further investigation. HDAC6 regulates 
cytoskeleton dynamics by deacetylating α-tubulin 
and inhibiting its activity (e.g., using the inhibitor 
ACY-1215), substantially reducing the migration and 
fusion efficiency of OCs[78]. 

2.3.3 Late stage: metabolic–epigenetic coupling 
regulates osteolytic function 

Metabolic reprogramming is intricately 
associated with histone acetylation. α-Ketoglutaric 
acid (α-KG), a tricarboxylic acid (TCA) cycle 
intermediate, not only acts as a substrate of HATs to 
promote histone acetylation but also indirectly 
inhibits OC differentiation by inhibiting H3K9 
demethylase activity[79, 80]. Moreover, the SIRT 
family of NAD+-dependent deacetylases, such as 
SIRT1 and SIRT6, affects OC activity by regulating 
related pathways, such as NF-κB and RANKL 
signaling, of which SIRT6 deficiency considerably 
augments OC generation and leads to OP[81]. ACLY 
was gradually activated during RANKL-induced 
BMM differentiation into OCs. Knockdown of ACLY 
or treatment with BMS-303141 significantly reduced 
nuclear and cytoplasmic acetyl-CoA levels in BMMs 
and OCs and inhibited OC formation. In addition, 
BMS-303141 inhibited OC formation and prevented 
ovariectomized (OVX) -induced bone loss in vivo[79]. 

3. Homeostasis of histone acetylation 
regulates the polarization of macrophages 
3.1 Proinflammatory and anti-inflammatory 

Macrophages differentiate into two functionally 
distinct subtypes in response to microenvironmental 
stimuli. The M1 type is activated by interferon 
(IFN)-γ/LPS via the TLR4/NF-κB pathway[82], 
secretes proinflammatory cytokines such as IL-6 and 
TNF-α, and promotes RANKL-mediated bone 
resorption in OP[83]. Enhanced MMPs mediated 
cartilage degradation in OA[84]. The M2 type is 
induced by IL-4/IL-13 via the STAT6/PPAR-γ 
pathway, which secretes anti-inflammatory factors 
such as IL-10 and TGF-β to promote osteogenic 
differentiation and cartilage repair facilitated by bone 
morphogenetic proteins (BMPs)[85]. Under 
inflammatory conditions, stimuli such as LPS or 
IFN-γ trigger signaling cascades that lead to the 
increased recruitment of HATs, including P300, to the 
promoters of inflammatory genes. The resulting 
hyperacetylation of histone tails, particularly at 
residues such as H3K27 and H4K16, facilitates the 
binding of transcription factors, such as NF-κB and 
STAT, thereby driving the expression of 
proinflammatory mediators. By contrast, HDAC 

counteracts this process by removing the acetyl 
groups, leading to chromatin condensation and 
reduced expression of these inflammatory genes. 
Histone modifications (e.g., H3K4 acetylation) 
promote M1 polarization by activating transcription 
factors (e.g., STAT1 and NF-κB). Several HDAC 
isoforms, such as HDAC3 and HDAC6, as well as 
class IIa family members, have been implicated in 
maintaining the proinflammatory cellular 
environment by inhibiting genes related to 
anti-inflammatory responses. Conversely, the 
inhibition of class IIa HDACs by agents such as 
TMP269 has been observed to drive M1 macrophage 
polarization, thereby intensifying the inflammatory 
response in injury models[86]. HDAC3 establishes a 
comprehensive inflammatory gene expression 
program in macrophages, and its loss or inhibition is 
associated with enhanced bone healing, resulting in a 
shift toward an M2-like repair phenotype[47]. These 
effects underscore the crucial role of histone 
acetylation dynamics in regulating the cellular 
functions of macrophages during inflammation and 
repair. 

3.2 Crosstalk among metabolism, polarization, 
and histone acetylation 

Recent studies have revealed the intricate 
interaction between cellular metabolism and histone 
acetylation, especially in macrophages. Metabolic 
substrates, such as acetyl-CoA, function as acetyl 
donors for HAT-mediated reactions, directly 
connecting the cell’s energy status to its epigenetic 
landscape[87]. In proinflammatory M1 macrophages, 
increased glycolysis enhances acetyl-CoA levels, 
resulting in the histone acetylation of genes that drive 
inflammation. Conversely, M2 macrophages, which 
mainly depend on oxidative phosphorylation, exhibit 
different histone acetylation patterns that promote 
anti-inflammatory gene expression[87]. This 
metabolic–epigenetic link may be particularly 
significant in orthopedic conditions, where systemic 
metabolic issues, such as metabolic syndrome and 
diabetes, exacerbate inflammation and hinder bone 
healing. In regulating macrophage polarization, 
lactate metabolism boosts acetyl-CoA production via 
ACLY activation, leading to H3K27 acetylation and 
indirectly enhancing the expression of M2-associated 
genes (Arg1 and Ym1) [FIGURE 3]. 

3.3 The monocyte–macrophage system 
interacts with osteoblasts to indirectly 
regulate bone injury repair  

As the primary regulator of bone injury repair, 
macrophages are involved in the entire process of 
inflammation initiation, tissue remodeling, and bone 
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regeneration. Regarding dynamic phenotypic 
switching, in the early stage of injury, infiltrating M1 
macrophages clear necrotic tissue and stimulate 
angiogenesis by secreting TNF-α, IL-1β, and other 
proinflammatory factors. By contrast, during the 
middle and late stages of repair, they switch to the M2 
phenotype, secreting IL-10, TGF-β, and other factors 
to suppress inflammation and promote osteogenic 
differentiation and matrix mineralization[88, 89]. 
CD169⁺ OsteoMacs cover >75% of the OB surface and 
support the mineralization of OBs via direct contact or 
the separation of BMP-2, platelet-derived growth 
factor (PDGF), and other factors. Depletion of 
OsteoMacs results in the loss of osteogenic 
function[90, 91]. Simultaneously, macrophages recruit 
mesenchymal stem cells via chemokines such as CCL2 
and CCL5[92] and activate the WNT signaling 
pathway to promote their differentiation into OBs[93]. 

A timely M1 to M2 conversion is crucial for bone 
regeneration, and an imbalance can lead to chronic 
inflammation or delayed repair[94, 95]. Persistent 
inflammation and impaired bone healing occur in 
aged individuals owing to disrupted M1 to M2 
switching[96, 97]. 

Histone acetylation is involved in the process of 
bone repair via the following mechanisms: First, 
HATs (such as P300/CBP) are recruited to the 
promoter regions of the key osteogenic transcription 
factors RUNX2 and OSTERIX, and their 
transcriptional activity is enhanced via H3K27ac 
modification[98] to promote bone matrix synthesis. 
Second, the increased level of histone acetylation in 
macrophages considerably augments the secretion of 
osteogenic factors such as BMP-2 and PDGF, directly 
activating the differentiation pathway of OBs[91, 93]. 

 
 

 
Figure 3: Histone acetylation is involved in common pathways for macrophage polarization in orthopedic disorders. 
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3.4 The double-sided effects of HAT/HDAC 
and NF-κB pathways in OC differentiation and 
macrophage polarization 

Unsurprisingly, the same core signaling 
molecules (e.g., NF-κB) and epigenetic modifications 
(e.g., histone acetylation) can mediate markedly 
distinct fates in macrophages. This mediation is 
governed not by a single factor, but by the interaction 
of different cell subtypes, the signaling 
microenvironment, and epigenetic programming. The 
key difference lies in the varying cell fates and 
functions. OC differentiation is a terminal process 
during which macrophages fuse to form 
multinucleated OCs that can resorb bone, driven by 
M-CSF and RANKL. Conversely, M1 polarization is a 
process of functional activation in which 
macrophages develop a proinflammatory and 
bactericidal phenotype after stimulation by IFN-γ and 
LPS, while maintaining their cellular identity. 

Various upstream stimuli, such as RANKL and 
LPS, direct NF-κB to bind to different genomic 
enhancer regions and recruit specific cofactors. This 
binding results in distinct acetylation patterns that 
ultimately influence the activation of either NFATC1 
or inflammatory factor genes. The NF-κB p65 subunit 
undergoes numerous posttranslational modifications, 
with acetylation at specific lysine residues serving as a 
functional code that modulates its activity[99, 100]. 
The different signaling pathways triggered by LPS 
and RANKL result in unique interactions between 
specific HATs and HDACs and the p65 subunit. This 
interaction creates diverse p65 acetylation patterns 
that influence its target gene selection. The 
M1-polarizing signal encourages hyperacetylation at 
K221/K310, enhancing inflammatory gene expression 
output[99, 101], while a RANKL signal might induce a 
more nuanced and transient acetylation pattern 
sufficient for initial NFATC1 induction but not a 
full-blown inflammatory response. 

HDACs play a central role in determining 
macrophage fate as their expression and activity 
significantly influence this process. These enzymes 
help regulate the balance between M1 and M2 
phenotypes. HDAC3 specifically promotes M1 
polarization, being vital for LPS-induced 
inflammatory gene expression and suppressing M2 
polarization[102, 103]. Similarly, HDAC9 is expressed 
at high levels during M1 polarization, and its lack 
results in an amplified M2 phenotype[104]. 

Macrophages exhibit remarkable heterogeneity 
and adaptability. Their functional characteristics are 
influenced by their origin (such as tissue-resident vs. 
monocyte-derived) and are critically dependent on 
signals from their microenvironment. This flexibility 

enables a single precursor cell, part of the monocyte–
macrophage system, to assume a wide range of roles. 
Recent single-cell research has uncovered specific 
macrophage subpopulations, including “arthritis- 
associated osteoclastogenic macrophages,” which 
serve as different precursor pools for pathological 
OCs under inflammatory conditions[105]. This 
finding suggests that preexisting macrophage 
subpopulations, potentially characterized by distinct 
epigenetic landscapes, may be predisposed to a 
specific fate. Consequently, the core of their different 
differentiation paths is that the external signaling 
microenvironment directs the final functional 
outcome of NF-κB by activating internal epigenetic 
mechanisms within particular cell subsets. 

4. Histone acetylation imbalance in the 
monocyte–macrophage system in bone 
diseases and targeted therapeutic 
strategies 

HDAC inhibitors have demonstrated the ability 
to diminish the dual therapeutic challenge of bone 
loss in preclinical models of RA and OP. This effect is 
achieved by regulating macrophage polarization and 
limiting OC-mediated bone resorption, making their 
use a promising approach for treating chronic 
inflammatory bone diseases[106, 107] [FIGURE 4]. 

4.1 Osteoporosis 
In OP, monocyte-derived OCs are the main 

regulators of bone homeostasis, and excessive 
activation of these cells leads to pathological bone 
resorption, which is a key feature of OP. As the only 
multinucleated giant cell responsible for bone 
resorption, their differentiation and activation are 
strictly controlled by the RANKL/RANK/OPG 
signaling axis, NF-κB, NFATC1, etc.[108]. The 
imbalance in the RANKL/OPG ratio owing to 
estrogen deficiency or aging leads to excessive OC 
differentiation. This results in systemic osteopenia, 
deterioration of bone microstructure, and a 
significantly higher risk of fractures[109, 110]. 
Conventional treatments for OC differentiation, such 
as bisphosphonates and denosumab, have 
demonstrated some effectiveness. However, their 
prolonged use can lead to side effects, including 
osteonecrosis of the jaw or other atypical 
fractures[111, 112], and cannot reverse the damaged 
bone microstructure. Therefore, exploring novel 
regulatory mechanisms of OC differentiation is 
crucial for understanding bone metabolic diseases. 
Interventions targeting this pathway, such as HDAC 
inhibitors or PCAF activators, can suppress excessive 
OC activation by restoring acetylation balance, 



Int. J. Biol. Sci. 2026, Vol. 22 
 

 
https://www.ijbs.com 

610 

offering a promising new approach for treating OP. 
Studies have found that HDAC2 expression is 

increased in OP models, and its inhibition reduces OC 
differentiation and improves trabecular bone 
structure[113]. In addition, HDAC7 deficiency results 
in enhanced OC activity and decreased bone mass by 
interfering with the MITF signaling pathway[45]. 
Nonetheless, the abnormal expression of class III 
HDAC SIRT6 can affect OC function by regulating the 
metabolic–epigenetic network[114], and its activator 
may have therapeutic potential. 

The HDAC3-selective activator reduces OC 
differentiation by inhibiting the acetylation of 
NF-κB[44]. Resveratrol inhibits the RANKL-induced 
NF-κB signaling pathway and decreases IKK activity 
by activating SIRT1. This action prevents the 
acetylation and nuclear translocation of 
NF-κB-P65[115]. Broad-spectrum HDAC inhibitors 
(e.g., TSA and SAHA) increase histone acetylation 
globally[23, 116, 117], potentially interfering with the 
epigenetic program required for OC differentiation, 
but their therapeutic window is narrow[118, 119]. 
Further development of subtype-selective inhibitors is 
necessary to strike a balance between efficacy and 
toxicity. For example, selective HDAC inhibitors (e.g., 
HDAC-1i and HDAC-2i) can dose-dependently 

reduce the number of OCs and the expression of key 
genes (e.g., TRAF6, ACP5, and CTSK) while inhibiting 
the release of proinflammatory cytokines. This 
finding suggests that targeting specific HDAC 
isoforms has therapeutic potential[120] while 
avoiding side effects[121]. LMK-235, a selective 
HDAC4/5 inhibitor, not only inhibits OC 
differentiation but also promotes osteogenesis by 
regulating histone acetylation[122]. This dual effect 
highlights the importance of targeting the histone 
acetylation pathway in the monocyte–macrophage 
system to reduce excessive bone resorption and 
promote bone formation, especially in conditions such 
as OP and inflammatory bone loss RA[123]. The 
regulation of HATs has also received attention. The 
BET protein inhibitor I-BET151[124] has been reported 
to block osteoclastogenesis by inhibiting the 
MYC-NFATC1 signaling axis and effectively 
attenuate inflammatory bone resorption and 
postmenopausal OP in a mouse model. JQ1 inhibits 
TLR/NF-κB signaling activation by preventing BRD4 
accumulation at the NF-κB and NFATC1 promoters. 
This inhibition leads to a significant reduction in 
RANKL-induced expression of OC differentiation 
markers (TRAP and CTSK) and helps alleviate bone 
resorption[60]. 

 
 

 
Figure 4: Histone acetylation modification affects bone metabolic balance and inflammatory response through epigenetic regulation, which is a new target for the treatment of 
osteoporosis and inflammatory bone diseases such as rheumatoid arthritis and osteoarthritis. 

 



Int. J. Biol. Sci. 2026, Vol. 22 
 

 
https://www.ijbs.com 

611 

4.2 OA and RA 
In monocytic macrophages, the dynamic 

regulation of histone acetylation is crucial for 
activating inflammatory genes and controlling 
macrophage polarization. This epigenetic process 
influences the switch between proinflammatory (M1) 
and anti-inflammatory (M2) phenotypes, playing a 
role in both the initiation and resolution of 
inflammation in orthopedic conditions[1]. In OA, 
while cartilage degeneration has conventionally been 
regarded as the primary pathology, recent research 
indicates that subchondral bone also plays a 
significant role in remodeling[125, 126], with bone 
sclerosis and cystic lesions being key drivers of OA 
progression. Abnormal activation of OCs in the 
subchondral bone region not only accelerates local 
bone resorption but also exacerbates cartilage 
destruction and synovium inflammation by releasing 
proinflammatory factors such as IL-6 and TNF-α[127]. 
In RA, increased activity of synovial HDAC1 
correlates with higher OC production, inflammation, 
and bone erosion. Inhibiting HDAC1 with new 
inhibitors, such as NW-21 and MS-275, has been 
shown to lower inflammatory cytokine levels, 
decrease key chemokines, including MCP-1 and 
MIP-1α, and reduce regulators of OC formation, such 
as TRAF-6 and NFATC1. These actions help reduce 
inflammation and prevent bone loss in arthritis 
models[106]. HDAC3 expression and activity in 
peripheral blood mononuclear cells of patients with 
RA are significantly decreased, resulting in an 
increased level of histone H3 acetylation[128]. 
HDAC3 deficiency leads to increased acetylation of 
the NF-κB inhibitor protein (IκB), promotes the 
nuclear translocation of NF-κB, and upregulates 
inflammatory factors such as TNF-α and IL-6[129]. 
Synovial macrophages not only initiate the 
inflammatory response but also aid in resolving 
inflammation and facilitating tissue repair in OA[130]. 
When a joint is damaged, macrophages are attracted 
to the site of the injury. They influence chondrocytes 
and other cells by releasing inflammatory mediators 
and growth factors, which, in turn, impact joint repair 
and maintain tissue homeostasis[131]. Histone 
acetylation modulators can reprogram macrophage 
polarization, which is significant for inflammatory 
orthopedic conditions such as OA. Shifting 
macrophages from a proinflammatory M1 to a 
reparative M2 phenotype may help resolve chronic 
synovial inflammation, prevent cartilage breakdown, 
protect joint function, and slow disease 
progression[132, 133]. The microbial metabolite 
butyrate promotes IL-4-induced M2 polarization (an 
anti-inflammatory state) by inhibiting HDACs 

(HDAC1/6/7/9). This inhibition increases H3K9 
acetylation and boosts STAT6 phosphorylation[134], 
which has the potential to promote bone repair. 
I-BET151, a BET inhibitor, alleviates arthritic bone 
destruction and reduces arthritis severity by 
preventing the accumulation of inflammatory tissues 
without affecting the initial inflammatory phase[135]. 

4.3 Bone repair 
Macrophages are multifunctional immune cells 

that actively participate in bone repair by 
coordinating the initial inflammatory response and 
subsequent tissue remodeling[27]. In the initial 
inflammatory stage of bone healing, proinflammatory 
M1 macrophages clear debris and release cytokines 
that attract progenitor cells. When these macrophages 
switch appropriately to the anti-inflammatory M2 
phenotype, they support tissue regeneration and 
remodeling, playing a crucial role in bone repair. 
Extended activation of M1 macrophages can lead to 
excessive inflammation and delay healing[132]. 
Increasing evidence highlights the crucial role of 
histone acetylation in regulating the macrophage 
phenotype and function during tissue repair 
processes[136]. By modulating chromatin accessibility 
and gene transcription, histone acetylation manages 
the fine balance between proinflammatory and 
anti-inflammatory macrophage repair states, which is 
vital for effective bone regeneration. Recent studies 
employing HDAC inhibitors suggest that inducing a 
hyperacetylated epigenetic state in macrophages 
improves inflammation resolution and supports 
tissue remodeling[137]. Moreover, metabolic and 
mechanical signals that influence acetyl-CoA 
production and activate HAT enzymes (such as 
P300/CBP) regulate macrophage responses. This 
forms an integrated signaling network that 
coordinates bone repair[138]. Future therapeutic 
approaches that precisely modulate histone 
acetylation in macrophages could accelerate fracture 
healing and improve outcomes for patients with 
complex bone injuries, all while minimizing 
unwanted side effects[41]. In summary, the emerging 
understanding of epigenetic regulation via histone 
acetylation in macrophages offers a promising new 
direction in bone regenerative medicine, emphasizing 
the need for further research with advanced 
molecular and translational studies[132, 139]. 

4.4 Comprehensive treatment of histone 
acetylation imbalance in bone diseases 

A therapeutic strategy that simultaneously 
targets macrophage polarization and OC 
differentiation has been demonstrated. The 
cornerstone of this dual-targeting approach is the 
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shared origin of macrophages and OCs[140]. This 
common precursor, the monocyte, is a key upstream 
target for interventions aimed at regulating the 
effector functions of both cell types. By focusing on 
epigenetic programming early on, it may be possible 
to prevent the formation of harmful inflammatory 
macrophages and damaging OCs. To effectively 
utilize histone deacetylation targeting for synergistic 
benefits, interventions need to be carefully planned. 
This involves transitioning from general, 
broad-spectrum agents to more targeted and 
advanced techniques. 

One approach involves designing a molecule 
that selectively inhibits a small, rational set of 
isoforms, such as a dual HDAC1/HDAC3 inhibitor. 
This type of compound could effectively reduce 
macrophage inflammation (via HDAC3) and 
osteoclastogenesis (via HDAC1) while avoiding the 
effects of other isoforms. Consequently, it may lessen 
the side effects commonly linked to pan-HDAC 
inhibitors[141]. 

Another method is to develop targeted delivery 
systems. Bone-targeting delivery involves attaching 
the HDACi to a bone-homing compound. 
Bisphosphonates and tetracyclines are known for 

their strong affinity to hydroxyapatite, the mineral in 
bone. A bisphosphonate–HDACi conjugate would 
accumulate in regions with high bone 
turnover—exactly where inflammatory macrophages 
and OCs are most active—providing high local drug 
levels while reducing systemic exposure[142]. 
Macrophage-targeting delivery leverages the natural 
phagocytic activity of the monocyte–macrophage 
lineage. HDACi can be encapsulated within 
nanoparticles (e.g., liposomes and polymers) that are 
preferentially engulfed by these cells[143]. Further 
specificity can be achieved by decorating the 
nanoparticle surface with ligands that target receptors 
uniquely or highly expressed on monocytes and 
macrophages, such as the CD64 receptor[144]. Since 
OCs are derived from the same lineage, this approach 
can effectively deliver the therapeutic payload to 
OCPs as well. For example, Danshentsin A[145] can 
improve bone repair by regulating HDAC3. The local 
administration of the BRD9 regulator, based on a silk 
protein hydrogel, to accurately alleviate osteonecrosis 
of the jaw[61] provides a reference for this direction. 
Currently available investigational drugs are listed in 
TABLE 1. 

 

Table 1: Small molecule compounds targeting histone acetylation modifications can be applied as potential therapeutic approaches for 
orthopedic disorders.  

Disease type Drug Target cells Molecular mechanism Specific diseases References 
cited 

Bone resorption 
diseases 

Quisinostat 
 

Osteoclast Inhibited the expression of CFOS and NFATC1 and increased the 
acetylation of NF-κB-P65, thereby blocking its nuclear accumulation 

Osteoporosis; 
Titanium 
particle-induced bone 
resorption 

[153, 154] 

Puerarin Osteoclast; 
osteoblast 

Inhibited HDAC1 and HDAC3, regulated ALP, RUNX2, TRAP, etc. It 
also inhibited the inflammatory response and apoptosis, and reduced 
the expression levels of IL-6, TNF-α, COX2 and MMP-14 related to the 
inactivation of NF-κB signaling 

Diabetic osteoporosis [155] 

Resveratrol Osteoclast; 
osteoblast 

Activation of SIRT1 inhibited RANKL-induced NF-κB signaling 
pathway and reduced IκBα kinase (IKK) activity, thereby blocking the 
acetylation and nuclear translocation of NF-κB-p65 

Senile osteoporosis [115, 156, 
157]  

Rosavin osteoclast Inhibition of HDAC1 promoted EEF2 expression, which in turn 
improved NF-κB and MAPK pathways 

Osteoporosis [158] 

Trichostatin A (TSA) Osteoclast HDACi, TSA significantly inhibited RANKL-mediated activation or 
induction of ERK, C-FOS and NFATC1. However, RANKL activation 
of JNK, p38, and NF-κB was not affected by TSA 

Osteoporosis [159] 
 

Entinostat (MS-275) 
 

Osteoclast; 
osteoblast; M1 
macrophage 

Inhibition of NF-κB; 
Accelerated cell proliferation and ALP production to enhance 
osteoblast differentiation in MC3T3-E1 cells 

Osteolysis of the skull [160-163] 

N-methylpyrrolidone 
(NMP); 
N-vinyl-2-pyrrolidone 
(NVP) 

Osteoclast; 
osteoblast; 
osteocyte 

Low affinity BRD inhibitor, promoted osteogenesis, inhibited 
osteoclast, and inhibited sclerostin expression 

Osteoporosis [164, 165] 
 
 

(+)-ND  Osteoclast BRD4 inhibitor, (+) -ND treatment inhibited MAPK and NF-κB 
signaling pathways 

Osteoporosis [166] 

JQ1 Osteoclast; 
osteoblast  

A high-affinity BET protein inhibitor that inhibited the expression of 
the master osteoclast transcription factor NFATC1 and osteoblast 
transcription factor RUNX2. 

Osteoporosis [167] 

I-BET151 Osteoclast The BRD inhibitor, I-BET151 acted by inhibiting MYC and targeting 
the newly described MYC-NFAT axis important for osteoclast 
generation 

Osteoporosis [124] 

Inflammatory 
bone disease 

SAHA M1 macrophage P21 expression induction, suppressed NF-κB nuclear accumulation Rheumatoid arthritis 
 

[163] 

Garcinol M1 macrophage Targeted PCAF inhibition with synergistic NF-κB and H3K9Ac 
blockade 

Autoimmune arthritis [168] 
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5. Current challenges and prospects 
Although strategies targeting HATs/HDACs 

have demonstrated promise in preclinical studies, 
their transition to clinical use encounters several 
obstacles. Primarily, the wide-ranging activity of 
HATs/HDACs could result in nonspecific chromatin 
remodeling. For example, HDAC inhibitors may 
activate both tumor suppressor and proinflammatory 
genes[146], resulting in a trade-off between efficacy 
and toxicity. Second, the epigenetic regulatory 
networks of OCs, OBs, and chondrocytes interact in a 
complicated manner[147], and tissue- or cell-specific 
delivery systems must be developed to avoid 
interfering with bone formation. In addition, the 
dynamic and reversible nature of histone modification 
requires drugs to exhibit continuous regulatory 
ability. Most of the existing small molecules have 
transient action[148, 149], and long-acting agents 
should be developed to achieve stable intervention. 
Combining metabolomic analysis with epigenetic 
studies can help elucidate metabolic–epigenetic 
interactions that regulate macrophage function. 
Understanding how changes in acetyl-CoA levels and 
other metabolic intermediates affect histone 
acetylation in macrophages could reveal new 
therapeutic targets[87].  

In addition to histone acetylation of the 
monocyte–macrophage system, there are also 
nonhistone acetylation and other histone modification 
types: acetylation of NFATC1 improves protein 
stability[150]; Ezh2-mediated trimethylation of H3K27 
(H3K27me3) promotes OC differentiation, and the 
demethylase Jmjd3 activates the gene table by 
removing H3K27me3 at the promoter regions of key 
genes such as NFATC1[151]. The newly discovered 
histone lactylation modification influences 
macrophage polarization. During initial immune 
activation (M1 phenotype), a glycolytic surge leads to 
lactate buildup; later, lactate promotes H3K18la 
modification, increasing anti-inflammatory gene 
expression (such as Arg1 and VEGF) and supporting 
the shift of macrophages toward the reparative M2 
phenotype[152]. Research in these areas remains 
scattered and preliminary, with an incomplete 
evidence chain; therefore, additional experimental 
studies are necessary to develop a systematic 
understanding of the role of nonhistone acetylation 
and other histone modifications in regulating 
orthopedic disorders. 

We propose several clinical prospects for 
regulating histone acetylation in monocyte–
macrophage systems to treat diseases. (1) Developing 
precise targeted strategies: Using the CRISPR-dCas9 
system to fuse HAT (e.g., p300) or deacetylase (e.g., 

HDAC3) domains for epigenetic editing at specific 
gene loci, and creating proteolysis-targeting chimeras 
along with more potent and isoform-specific HDAC 
and HAT inhibitors. (2) Investigating dynamic 
regulation pathways: Studying how cellular metabolic 
states (including acetyl-CoA levels) and signaling 
pathways (such as cytokine-mediated 
posttranslational modifications) influence acetylation 
to achieve spatiotemporal and adaptive regulation of 
the pathological environment. This strategy includes 
developing responsive drug delivery systems that 
release HAT/HDAC inhibitors only in response to 
specific pathological cues—for example, engineering 
nanoparticles to release their payload in low-pH 
environments typical of inflammation or active bone 
resorption by OCs. (3) Mapping protein–protein 
interaction networks (interactomes) of key HATs and 
HDACs in different cell types to identify unique 
cofactors and transcription factors that recruit them to 
their target genes, thereby conferring 
cell-type-specific functions. Collectively, these 
strategies aim to transition histone acetylation 
research into precise, dynamic, and cell-specific 
therapeutic approaches. 

Conclusion 
Recent preclinical studies suggest that histone 

acetylation in the monocyte–macrophage system 
significantly influences inflammatory responses, 
polarized phenotypes, and osteogenesis processes, all 
of which are closely linked to the development of 
orthopedic diseases. Modulating histone acetylation 
via HDAC inhibitors and other epigenetic agents has 
been shown to decrease proinflammatory cytokine 
production, prevent pathological bone resorption, 
and encourage bone formation. Although dedicated 
clinical trials in this area are lacking, strong evidence 
from research on RA, OC differentiation, and 
metabolic–epigenetic interactions offers a compelling 
basis for further exploration of epigenetic targeting 
strategies for orthopedic disorders.  
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