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Abstract 

Cancer is a leading cause of death in Western countries. Apart from surgical resection, the primary 
treatment modalities chemotherapy and radiotherapy inflict serious side effects, and significantly remodel 
both tumor metabolism and the tumor microenvironment. This consequently compromises treatment 
efficacy, resulting in multiple drug resistance, immune evasion and cancer progression. Lysosomes are 
unique acidic intracellular organelles crucial for maintaining cellular health and homeostasis via 
degradation of cellular waste. Lysosomes are also required for autophagy, a stress-induced catabolic 
pathway that is important for cell survival. Autophagy is typically enhanced in tumor cells, as it can confer 
cyto-protection against the deleterious cytotoxic effects of chemotherapy, and suppress anti-cancer 
immune response. Owing to their acidic nature and their role in endocytosis, lysosomes can be readily 
targeted and manipulated, thus attenuating the autophagic flux and improving cancer treatment outcome. 
Herein we focused on various classic and innovative lysosome modulators, their impact on autophagy, 
the enhancement of immune response, and consequent inhibition of tumor growth and metastasis. We 
discuss modalities to minimize adverse effects in cancer patients by either utilizing harmless compounds, 
achieving synergistic activity with combination therapies, or specifically targeting the tumor by using 
advanced nanoparticle technologies. 
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Introduction 
Lysosomes are eukaryotic membrane-bound 

cellular organelles with an acidic lumen at a pH range 
of 4.5-5.5 [1–4], containing approximately 60 
hydrolytic enzymes [5] displaying optimal activity at 
acidic pH [6–8]. These hydrolytic enzymes, including 
proteases, nucleases, lipases, glycosidases, 
phospholipases, phosphatases, and sulfatases, are 
responsible for the degradation of proteins, nucleic 
acids, lipids, glycosides, and cellular debris, including 
damaged organelles, thereby maintaining cellular 
health and homeostasis [9–12]. Apart from their major 
degradative role, lysosomes are central sensory hubs 
which respond to multiple cues to regulate 
metabolism, cell differentiation and division, as well 
as apoptosis and tumorigenesis [13–16]. Furthermore, 
lysosomes are key components and regulators of the 
homeostatic autophagy process [17–19]. The latter 

involves the sequestration of damaged organelles, 
misfolded proteins, intracellular pathogens and other 
foreign substances in double-membrane vesicles 
known as autophagosomes, which fuse with 
lysosomes for cargo degradation and recycling 
(Figure 1) [20–22]. Autophagy promotes either cell 
survival or cell death [23–27]. As a stress-induced 
catabolic pathway, autophagy facilitates the 
adaptation of cells to stress conditions such as 
starvation, by breaking down damaged or 
non-essential cellular structures and macromolecules 
to provide essential metabolites [28,29]. Mitochondrial 
damage triggers mitophagy (mitochondrial 
autophagy), by which it protects the cell against 
release of pro-apoptotic proteins and reactive oxygen 
species (ROS) generation [30]. Endoplasmic reticulum 
(ER) stress, following accumulation of unfolded 
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proteins can lead to ROS generation and cell death 
[31,32]. Autophagy provides cyto-protection by 
degrading damaged ER, thereby attenuating 
ER-stress defense and apoptosis [33]. Moreover, 
autophagy can induce anti-cancer drug resistance via 
several molecular mechanisms which were previously 
reviewed [34–36]. Enhanced autophagy protects 
cancer cells from DNA damage [37–39], in part, by the 
timely degradation of proteins of the DNA damage 
repair (DDR) system, such as checkpoint kinase 1 
(CHEK1) [40,41]. This timely degradation prevents 
excessive retention of DDR proteins on 
damaged/repaired chromatin loci, allowing for their 

replacement by subsequent factors necessary for the 
next step in the DNA repair pathway. Hence, 
autophagy promotes enhanced DDR in cancer cells 
during treatment with DNA damaging modalities, 
such as 5-fluorouracil (5-FU) [42] and radiation 
therapy [43,44]. Given the key role that autophagy 
plays in cancer development, progression and 
survival [35,45–48], concentrated efforts were focused 
on developing novel strategies for the inhibition of 
autophagy during cancer therapy [49–53]. This 
development requires efficient assays for monitoring 
the autophagy steps (Figure 1), to identify and 
quantify autophagy inhibition [54,55].  

 

 
Figure 1: Modulating the enhanced autophagy in cancer cells via lysosomal targeting. The autophagy process is initiated by the formation of a cap shaped, 
double-membraned phagophore, which expands and elongates to capture cytoplasmic cargo. The cargo is tagged by ubiquitin-binding protein p62 (Sequestosome-1). 
Microtubule-associated protein 1 light chain 3 alpha (LC3) is recruited to the phagophore membrane through phosphatidylethanolamine (PE) lipidation to form a 
double-membrane autophagosome, decorated with LC3-II. This autophagosome fuses with a lysosome to form an autolysosome, in which the cargo and membrane proteins are 
degraded. The lysosomes of cancer cells and M2-macrophages are highly acidic, with increased activity of hydrolases. This results in over processing of the digested cargo, thereby 
preventing cancer antigen presentation, culminating in immune evasion. Lysosomotropic drugs (LDs) affect autophagy at the indicated sites: 1) Lysosomal alkalinization by CQ, 
HCQ, Naphplatin, hydrotalcite, TFP, and BCZT leads to LMP. Conversely, treatment with ginsenosides Ro and Rh2, UIOQM-IQ, Lys05, and Ir-C3N5 induces LMP, resulting in 
lysosomal alkalinization. Both alkalinization and LMP can inhibit autophagosome-lysosome fusion and/or decrease degradation within autolysosomes, resulting in autophagy 
inhibition. 2) Inhibiting autophagosome-lysosome fusion results in the accumulation and enlargement of autophagosomes, leading to vacuolization cell death. 3) LMP mediates the 
release of lysosomal content to the cytosol, including ROS and hydrolytic enzymes, triggering mitochondrial depolarization and lysosomal cell death. 4) Lysosomal alkalinization 
decreases the activity of hydrolases, thereby reducing degradation of MHC and antigen molecules within autolysosomes. This potentiates immunity by enhancing self-antigen 
presentation on cancer cells and cross-presentation by macrophages.  
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Lysosomal targeting can be achieved using 
lysosomotropic drugs (LDs), primarily characterized 
by their hydrophobic weakly basic nature, which 
allows them to freely diffuse into cells and 
intracellular organelles [56–58]. LDs diffuse in and out 
of the cellular membranous compartments, however, 
once they encounter the acidic lumen of the lysosome, 
they undergo protonation, become cationic and can 
no longer traverse the membrane. This results in their 
intercalation and accumulation within the lysosomes’ 
membranes [59–61]. This sequestration “sink” effect 
results in the accumulation of LDs in lysosomes at 
concentrations which are 1000-2500-fold higher than 
their extracellular drug concentrations within a few 
hours [62]. From a mechanistic perspective, 
concentrated positively charged molecules at the 
water-interface of the membrane bilayer disrupt the 
electrostatic balance between the lipid headgroups, 
inducing repulsion between the choline groups of 
phospholipids and increasing the distance between 
neighbor lipids [59]. This can lead to membrane 
fluidization [63–66] and lysosomal membrane 
permeabilization (LMP) [67]. The utility of lysosomal 
protons (H+) for the protonation process and loss of 
protons following LMP, alkalinizes the lysosomal 
luminal pH [68,69]. Lysosomal targeting can also be 
achieved by utilizing the endocytic pathway [70].  

In this review we focus on strategies, from the 
last decade, for lysosomal targeting, leading to the 
induction of lysosomal dysfunction, LMP, lysosomal 
rupture and lysosomal cell death (LCD), with 
emphasis on autophagy inhibition, and immunogenic 
cell death (ICD). We discuss lysosomal targeting with 
single agents and in combination with other drugs 
(i.e., chemotherapeutics) or bona fide therapy 
modalities (i.e., radiotherapy and sonodynamic 
therapy) for the eradication of cancer cells and 
tumors. While targeting lysosomes with 
photosensitizers for efficient photodynamic therapy 
(PDT) is a rapidly growing research field, it has been 
widely reviewed in recent years [71–78] and hence 
will not be discussed herein.  

Targeting lysosomes for anti-tumor 
immune response 
Macrophage polarization 

Macrophages are the predominant immune cell 
population present in cancer tissues [79,80]. While 
macrophages have tumor-cell killing capacities, most 
experimental and clinical reports describe 
macrophages as protumor cells attenuating antitumor 
immune responses [81–84]. Following macrophage 
polarization, they assume two main phenotypes 
designated M1 (pro-inflammatory) and M2 (anti- 

inflammatory) depicted in Figure 2 [81–85]. M1 
macrophages are stimulated by interferon gamma 
(IFN-γ) and toll like receptor (TLR) ligands, including 
lipopolysaccharide (LPS) and lipoteichoic acid (LTA). 
Following stimulation, they express high levels of 
pro-inflammatory cytokines, including IL-1, IL-6, 
IL-12, IL-23, tumor necrosis factor α (TNFα) and 
IFN-γ,  as well as inducible nitric oxide synthase 
(iNOS) [86]. While M1 macrophages eliminate 
malignant cells, they also promote the antitumor 
cytotoxic activity of other leukocytes. Their enhanced 
tumor antigen presenting ability activates cytotoxic 
T-lymphocytes (CTLs, killer T cells, CD8+ T cells), and 
the cytokines they secrete stimulate and boost the 
function of natural killer (NK) cells.  

In contrast, protumoral M2 macrophages act as 
immune suppressors [87]. They have an impaired 
tumor antigen presentation ability, and secrete 
anti-inflammatory suppressor factors such as IL-10, 
hence negating any antitumor immune response. 
Furthermore, M2 macrophages release tumor 
promoting growth factors, such as platelet-derived 
growth factor (PDGF), transforming growth factor β 
(TGF-β) and vascular endothelial growth factor 
(VEGF), thereby encouraging tumor cell proliferation, 
angiogenesis and metastasis [81–85]. Collectively, 
high prevalence of M2 tumor associated macrophages 
(TAMs) predicts dismal prognosis in various cancers, 
including lung [88], breast [89], pancreatic [90], and 
prostate cancer [91]. It is well established that one of 
the most paramount characteristics that distinguishes 
between M1 and M2 macrophages is their lysosomal 
status. Lysosomes of M2 macrophages are more acidic 
than those of their M1 counterparts (pH ~4.5 vs ~5.3, 
respectively) [92–94]. This affects the degradation 
process of biomolecules within the lysosomal lumen 
and the phagocytotic cascade, since many lysosomal 
proteases possess acidic pH optima below 4.5 [6]. M2 
lysosomes display elevated hydrolase activity [95,96], 
leading to enhanced degradation of proteins (as well 
as lipids and nucleic acids), resulting in excessive 
antigen processing and diminished peptide 
presentation by MHC [97,98]. This enhanced 
lysosomal activity also promotes an elevated 
autophagic flux in M2 macrophages [99,100]. 

In this respect, autophagy promotes lysosomal 
degradation of MHC I, thereby decreasing cancer- 
related antigen presentation, and facilitating immune 
evasion [101,102]. Alkalinization of lysosomal pH 
with chloroquine (CQ) [101] or bafilomycin A1 
(BafA1) [102] attenuated both the lysosomal 
enzymatic activity and the autophagic flux, resulting 
in higher surface presentation of MHC-I and an 
improved immune response against pancreatic 
cancer. This was also demonstrated by inhibiting the 
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activity of the lysosomal protease cathepsin B (CTSB) 
[103]. 

Strategies are being developed to convert M2 to 
M1 macrophages, many of which utilize compounds 

that attenuate the lysosomal acidity and enzymatic 
activity. Naphplatin, a conjugation product of 
cisplatin to the core of the topoisomerase II inhibitor 
amonafide [104], was shown to localize in lysosomes 

 

 
Figure 2: Effectors of macrophage polarization and characteristics of the macrophage phenotypes. On the left side, M0 resting macrophages undergo polarization 
to the pro-inflammatory/anti-tumoral M1 phenotype by microbial agonists of toll-like receptors, such as lipopolysaccharide (LPS), as well as the cytokines interferon gamma 
(IFN-γ) and tumor necrosis factor α (TNFα), which are then secreted by M1 macrophages themselves. The latter engulf and digest cancer cells via phagocytosis and autophagy. 
Lysosomes of M1 macrophages display relatively high pH for lysosomes (~5.3) and low hydrolase activity, resulting is moderate autophagy flux and cargo digestion. This results 
in optimal cancer-antigen sizes for cross presentation on MHC I, which then activates CD8+ cytotoxic T-cells. M1 macrophages secrete nitric oxide (NO), ROS and TNFα which 
elicit cancer cell death via apoptosis and necrosis. M1 macrophages activate and stimulate cytotoxic immune cells, including CD8+ T-cells and natural killer cells (NKs), by 
secreting pro-inflammatory interleukins including IL-6 and IL-12 as well as IFN-γ. On the right side: M0 resting macrophages undergo polarization to the 
anti-inflammatory/pro-tumoral M2 phenotype by naturally secreted IL-4 and transforming growth factor-β (TGF-β) as well as by radiotherapy (and other anti-cancer treatment 
modalities). M2 macrophages secrete pro-tumoral growth factors, such as platelet derived growth factor (PDGF), which promote angiogenesis, epidermal growth factor (EGF) 
and TGF-β that induce cancer cell proliferation, migration and invasion. M2 lysosomes present with high acidity (pH~4.5) and enhanced hydrolytic activity. This leads to the 
over-processing of cargos through the autophagy system, resulting in low cancer-antigen cross-presentation, facilitating immune evasion. M2 macrophages actively suppress the 
activity of CD8+ T-cells and NKs by secreting anti-inflammatory interleukins such as IL-10.  
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of macrophages and increase their luminal pH [94]. In 
turn, lysosomal alkalinization promoted the release of 
Ca+2 via the lysosomal cation channel mucolipin 
(Mcoln1), resulting in activation of the MAPK p38 
signaling pathway. This led to the transformation of 
bone marrow derived macrophages (BMDMs) and 
M2-BMDMs to the pro-inflammatory M1-phenotype 
[94]. In mice transplanted with murine colorectal 
cancer (CRC) CT-26 cells, treatment with cisplatin 
monotherapy induced an immune-suppressive 
response by increasing the percentage of tumoral M2 
macrophages to 40% (p < 0.01). In contrast, naphplatin 
decreased the tumoral M2 macrophage population 
below 5%, while increasing the M1 population to 
~80% (p < 0.01 and p < 0.001, respectively). This 
change was accompanied by a ~50% decrease in the 
levels of regulatory T cells (Tregs) in the tumor, and 
myeloid-derived suppressor cells (MDSCs) in the 
blood, further alleviating immune suppression. 
Naphplatin treatment boosted TAMs to inhibit CRC 
growth (final tumor weight was 10% of control) and 
pulmonary metastasis in CT-26 cells bearing mice, 
resulting in an 82.7% increase in survival time. To 
assess the contribution of macrophages to the 
anti-tumor effect of naphplatin, mice were also 
pretreated with the macrophage depleting agent 
clodronate [105], which abolishes mitochondrial ATP 
generation via inhibition of mitochondrial ADP/ATP 
translocase leading to apoptotic cell death. 
Pretreatment with clodronate diminished the 
anti-tumor effect of naphplatin, resulting in only 35% 
reduction in tumor weight. These findings establish 
the importance of lysosomal alkalinization to the 
immune response [94].  

The same mechanism of increased lysosomal pH, 
consequent Ca+2 release and activation of MAPK p38 
was demonstrated following treatment of mouse 
BMDMs and human macrophages with CQ [92]. 
M2-TAMs were converted to the M1 phenotype, 
resulting in tumor growth inhibition and prolonged 
survival of B16 melanoma-bearing mice. Furthermore, 
following CQ treatment, mouse models of lung 
metastasis displayed a decreased number of tumor 
nodules in the lungs, and H22 hepatocarcinoma 
malignant ascites mouse models displayed reduced 
volume of ascites as well as reduced number of tumor 
cells [92].  

pH-gated nanoparticles (PGNs) that self- 
assemble from amphiphilic copolymers were 
designed to accumulate within- and distinguish 
between lysosomes of M2-like BMDMs and other cell 
types, based on subtle lysosomal pH deviations [93]. 
When conjugated to the TLR7/8 agonist 
imidazoquinoline (IQ), the now termed pH-gated 
nanoadjuvant (PGN4.9) selectively increased 

lysosomal pH in M2 macrophages, decreased 
cathepsin activity and converted these cells to the 
M1-phenotype. This in turn increased antigen 
presentation and activation of CTLs, resulting in 
tumor regression in a mouse 4T1 breast cancer model 
and further circumvented the formation of lung 
metastasis [93]. 

Yue Chen et al., took a different approach by 
harnessing the increased expression/activity of CTSB 
in tumor cells [106–109] and M2 macrophages [95,110] 
to ignite a newly designed lysosomal “nanorocket” 
[111]. The latter, termed UIOQM-IQ, consists of an 
ultrasmall iron oxide (UIO) nanoparticle (NP) 
conjugated to a CTSB-cleavable peptide, an 
aggregation-induced emission fluorophore QMTPA, 
and surface IQ. Following IQ-dependent endocytosis 
and internalization into lysosomes, CTSB cleaves the 
peptide within UIOQM, thus releasing QMTPA and 
UIO NPs with exposed -NH2 and -SH termini which 
drive cross-linking and aggregation of both QMTPA 
and UIO NPs. Both aggregates allow tumor 
visualization, with QMTPA activating a fluorescent 
“on” switch, and UIO inducing a distinct MRI 
contrast shift, enabling deep-tissue imaging. Most 
importantly however, the bulky UIO aggregates 
within lysosomes lead to elevated osmotic pressure, 
and consequent LMP [111]. LMP can lead to 
lysosomal alkalinization and dysfunction, or to the 
release of lysosomal content into the cytosol, leading 
to LCD [112,113]. The former will result in autophagy 
inhibition and macrophage polarization, and the latter 
should release cancer specific antigens and elicit an 
immune response. In fact, LMP is regarded as a 
mechanism driving ICD which triggers an intact 
antigen-specific adaptive immune response [114,115]. 
Murine mammary carcinoma 4T1 cells express higher 
levels of CTSB than normal 3T3 murine fibroblast cells 
[111,116], hence UIOQM-IQ elicited a specific 
cytotoxic effect on 4T1 but not on 3T3 cells (surviving 
fractions ~20% and > 90%, respectively) [111]. In vivo 
evaluation of UIOQM-IQ was conducted using 4T1 
cells bearing mice. The lysosomal “nanorocket” 
promoted a robust anti-tumor immune response, 
represented by a remarkable increase in M1:M2 
macrophage ratio from ~2 to > 30 (p < 0.0001), > 4-fold 
increase in secretion of TNFα and IFN-γ as well as IL-6 
and IL-12. Moreover, an increase in the percentage of 
mature dendritic cells in tumor-draining lymph nodes 
(TDLN), and an increase in infiltrating CTLs was also 
noted, along with a decrease in the levels of Tregs. 
The combination of the anti-tumor immune response 
and the cytotoxic effect of UIOQM-IQ resulted in 
5-fold smaller tumors and longer survival time (~35 
days vs. > 60 days for control and UIOQM-IQ treated 
mice, respectively). Notably, UIOQM-IQ reduced 



Int. J. Biol. Sci. 2026, Vol. 22 
 

 
https://www.ijbs.com 

1698 

lung metastases by ~8-fold [111].  
E64-DNA, a DNA nanodevice composed of the 

small-molecule cysteine protease inhibitor, E-64 
(Figure 3) [117], conjugated to a 38-base pair DNA 
duplex, was developed to selectively enter TAMs via 
endocytosis and accumulate within their lysosomes. 
Once there, E64-DNA inhibited lysosomal-specific 
cysteine proteases which are elevated in M2-TAMs, 
thereby increasing the cells’ ability for antigen cross- 
presentation and effective CTL activation [95]. When 
E64-DNA was combined with the widely used 
alkylating chemotherapeutic cyclophosphamide [118], 
sustained tumor regression was achieved in a triple 
negative breast cancer (TNBC) mouse model [95].  

Panax ginseng ginsenosides 
In an effort to potentiate anti-tumor immunity 

with minimal chemotherapy-inflicted adverse effects, 
as well as to improve the quality of life of cancer 
patients, strategies are being developed for the 

combined treatment of herbal agents along with 
chemotherapy [119–122]. One of the most commonly 
used roots that has been subjected to extensive 
anti-cancer research is ginseng, primarily its 
pharmacologically active constituents ginsenosides 
[123–127].  

Ginsenosides are triterpene saponins (Figure 3), 
which include major ginsenosides and their 
secondary metabolic derivatives [128], of which Rg3 
[129,130] and its deglycosylated derivative Rh2 
[131,132], exhibit the most beneficial biological 
activities in various human pathologies. Regarding 
the present review, various ginsenosides were shown 
to increase lysosomal pH [42,133], induce LMP 
[133,134], inhibit autophagy flux [42,133,135–138], and 
enhance immunity [126,139–141]. These resulted in 
sensitization to chemotherapy/immunotherapy [42, 
135,137–139,142,143], and most importantly enhanced 
in vivo anti-tumor activity [136,139,141,143,144].  

 

 
Figure 3: Structures of various LDs described in the current review. The anti-malarial drug chloroquine (CQ), its derivative hydroxychloroquine (HCQ), and its 
bisaminoquinoline dimeric form Lys05. The irreversible and selective cysteine protease inhibitor E-64. The antipsychotic phenothiazine trifluoperazine (TFP). One of the primary 
pharmacologically active constituents of ginseng, ginsenoside Rg3 and its deglycosylated derivative Rh2. Excluding ginsenosides, all molecules have hydrophobic rings and a 
hydrophilic amine group which undergoes protonation in acidic lysosomes, leading to their lysosomal accumulation, where they elicit lysosomal alkaliniziation and/or LMP. The 
ginsenosides act by triggering LMP by increasing cytosolic ROS levels. The molecules were generated using PubChem Sketcher V2.4. 
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It should be emphasized that although 
ginsenosides affect lysosomal function, they are not 
LDs according to their physicochemical properties, 
endowing them with both low water solubility and 
poor membrane permeability [145]. Ginsenosides Ro 

[146,147] and Rh2 were shown to increase cytosolic 
ROS levels in cancer cells, either via the estrogen 
receptor 2 (ESR2)-neutrophil cytosolic factor 1 
(NCF1)-ROS axis [42], or mitochondrial ROS 
production [133]. Extralysosomal ROS can damage 
the lysosomal membrane, and induce LMP with 
consequent lysosomal alkalinization, as was 
demonstrated upon mitochondrial ROS generation 
[148,149]. This was also the case with Ro and Rh2 
[42,133,134]. As abovementioned, lysosomal 
alkalinization reduces the activity of resident 
hydrolases; consistently, treatment with Ro reduced 
the activity of CTSB and CTSD [42]. Lysosomal 
alkalinization can also inhibit autophagosome- 
lysosome fusion [150]. Both decreased lysosomal 
enzymatic activity and autophagosome-lysosome 
fusion result in a reduction in the autophagic flux, as 
was observed following Ro or Rh2 treatment [42,133]. 
The ability of ginsenoside Rh2 to inhibit autophagy 
was utilized to reverse the phenotype of RAW264.7 
derived M2 macrophages to the M1 subtype in vitro 
[140]. While an Rh2 liposome (Rh2-lipo), where Rh2 
functioned both as a cholesterol substitute membrane 
stabilizer, and a chemotherapy adjuvant, successfully 
polarized macrophages to the M1 phenotype in vivo 
[141]. The increase in M1 macrophages in an 
orthotopic breast cancer 4T1 tumor bearing mouse 
model injected with Rh2-lipo, was accompanied by 
residual levels of IL-10 and consequently high levels 
of activated CTLs and a dramatic decline in Tregs. The 
resulting potentiation of the immune response led to a 
40% decrease in tumor volume, an impact which was 
enhanced to 80% via the co-encapsulation of Rh2 with 
paclitaxel (PTX) [141]. Utilizing Rh2 as a component of 
the liposome membrane allowed tumor targeting via 
the glucose transporter 1 (GLUT1) which recognizes 
ginsenosides as substrates [151], and is overexpressed 
in tumors [152]. 

Ginsenoside Rg3, another late-stage autophagy 
inhibitor [137,138], was also incorporated as a 
cholesterol substitute in the membrane of liposomes 
(Rg3-LPs) [139]. In this study, the affinity of 
ginsenoside-liposomes for GLUT1 was exploited to 
both penetrate the blood-brain-barrier (BBB), and 
deliver PTX for the targeted eradication of C6 glioma 
brain tumors in both mice and rat models. Rg3-LPs, 
and to a greater extent Rg3-PTX-LPs, polarized M2 
macrophages to the M1 phenotype, both in vitro and 
in vivo, along with an 80% decline in the levels of 
TGF-β. The immune activation in the tumor 

microenvironment (TME) drastically reduced the 
presence of MDSCs and Tregs, while increased the 
abundance of CTLs from 5% to 30-40%. Collectively, 
these favorable activities dramatically increased the 
survival of C6 glioma bearing mice from 21 days to 32 
and 54 days for Rg3-LPs and Rg3-PTX-LPs, respectively 
(p < 0.01). In the rat model, the survival was even 
longer, with the Rg3-PTX-LPs group exceeding the 
experiment time of 60 days [139]. 

A systematic review analyzed the impact of 
combining first-line chemotherapy with the 
ginsenoside Rg3 in the treatment of advanced 
non-small cell lung cancer (NSCLC) [153]. Analysis of 
2,200 NSCLC patients from China revealed excellent 
results highlighting the beneficial effects of Rg3 for 
cancer patients. When compared to the control group 
receiving first-line chemotherapy alone, the Rg3 
supplemented patients exhibited higher response 
rates (p < 0.00001), higher Karnofsky performance 
status index (p < 0.00001), higher one- and two-year 
survival rates (p = 0.01, p = 0.006), higher rate of 
weight improvement (p = 0.02), reduced VEGF levels 
(p = 0.02), less gastrointestinal adverse effects (p = 
0.02) as well as lower rates of myelosuppression (p < 
0.00001) [153]. An additional review analyzed the 
benefits of ginsenosides Rh2, Rg3 and compound K 
[154,155] as adjuvant therapy in 1,448 hepatocellular 
carcinoma patients, demonstrating similar remarkable 
results [156]. It should be conveyed, that since 
ginsenosides display pleiotropic activities [129–132], 
the beneficial effects they elicit as adjuvants cannot be 
solely attributed to their lysosomotropic effects.  

Radiotherapy 
Radiation therapy aka radiotherapy (RDT) is an 

established hallmark of cancer treatment, along with 
chemotherapy, immunotherapy, hormone therapy, 
and surgery [157–159]. RDT employs high-energy 
ionizing radiation in order to elicit two major 
antitumor activities [160,161]. The first is the obvious 
eradication of the irradiated target cells by inducing 
DNA damage, mitotic catastrophe and apoptosis 
[162]. The second, is referred to as in situ tumor 
vaccination [163,164] which stimulates a systemic 
immune-mediated antitumor response. Following 
RDT-induced cell death, the local release of tumor- 
derived antigens promotes their cross-presentation by 
various antigen presenting cells (APCs), which in turn 
instigates an immediate and prolonged immune 
response via the activation of NK cells, CTLs and 
B-cells [165–168]. This “vaccination” can elicit an 
abscopal effect, where irradiation of a small tumor 
area induces a systemic antitumor immune response 
throughout the body, resulting in regression of 
tumors in remote, untreated parts of the body [169–
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171]. Inasmuch as this sounds promising, RDT is 
actually effective in only a fraction of cancer cases, 
while in others it has the exact opposite effect. In this 
respect, various studies have shown that following 
RDT, a burst in immune-suppressive stimuli occurs 
[162], leading amongst others, to an elevation in 
pro-tumoral M2 macrophages [162,172,173]. 
Moreover, using the lung colonization model of 
transplanted murine 4T1 breast cancer cells, RDT was 
shown to enhance lung metastasis in mice [173,174], 
and the pro-metastatic impact required the presence 
of macrophages [174]. Although studies have shown 
that lysosomes and autophagy are main contributors 
to this RDT-resistance [159,175,176], only a few 
studies have attempted to target lysosomes to 
overcome this radioresistance. 

A very recent study that targeted lysosomes, 
followed the example of successfully enhancing 
immunotherapy by alkalinizing the lysosomes of 
macrophages, and implemented this strategy 
following RDT treatment [173]. Using the mouse 4T1 
orthotopic breast cancer model, Bei Li et al., 
demonstrated that an immune-suppressive TME was 
established following RDT. This included a high 
prevalence of M2 macrophages and poor tumor 
infiltration of CTLs [173]. Post-RDT macrophages 
were stimulated with cytidine monophosphate 
guanosine oligodeoxynucleotide (CpG), a TLR 9 
agonist, resulting in the rewiring of their central 
carbon metabolism. This promoted these 
macrophages to engulf and eradicate tumor cells for 
antigen cross-presentation [177]. However, since M2 
macrophages have extremely acidic lysosomes with 
enhanced hydrolytic activity, as mentioned above, the 
antigens were over-processed, abolishing antigen- 
presentation by MHC I. Thus, the authors 
administered a MgAl-based hydrotalcite (bLDH) 
alkaline nanoadjuvant to the peritumoral area 
post-RDT. Hydrotalcite is an antacid currently used to 
neutralize stomach acidity [178,179]. While the 
combination of CpG and bLDH was sufficient to 
increase surface localization of antigen presenting 
MHC I in macrophages, the effect was even stronger 
post RDT. A previous study with hydrotalcite- 
embedded magnetite NPs, showed the accumulation 
of these NPs in lysosomes [180]. Consistently, bLDH 
induced lysosomal alkalinization in BMDMs. The 
enhanced cross-presentation following co- 
administration of CpG and bLDH resulted in priming 
of antigen‐specific CTLs and tumor infiltrating NKs 
leading to the consequent suppression of the primary 
tumor and lung metastasis in the mouse 4T1 breast 
tumor model [173].  

The brain tumor glioblastoma multiforme (GBM) 
is a highly aggressive and fulminant malignancy 

which displays immune-evasion [181], 
chemoresistance and radioresistance [182,183]. In the 
latter respect, to surmount this RDT resistance, Xin 
Zhang et al., utilized trifluoperazine (TFP, Figure 3) 
[184], an antipsychotic phenothiazine from the 1950s 
[185]. TFP has been shown to inhibit proliferation, 
migration, and invasion of GBM cells, however it 
failed to extend the survival time of orthotopic 
U87MG xenograft bearing mice [186]. In contrast, 
when combined with RDT, TFP significantly 
increased the survival of orthotopic xenograft GBM 
mouse models with P3 cells (median survival 46.0 vs 
29.7 days for combined treatment vs. radiation alone, 
p < 0.01) [184]. TFP is a highly hydrophobic weak base 
compound [187], like the majority of anti-psychotic 
drugs, and thus highly accumulates in lysosomes 
[59,188]. Indeed, Xin Zhang et al., demonstrated 
lysosomal alkalinization following treatment with 
TFP, along with a decrease in the activity of lysosomal 
cathepsin proteases, and a consequent decrease in the 
autophagic flux [184]. In a follow up paper, this group 
further revealed that TFP induced lysosomal swelling 
and LMP, resulting in reduction of the autophagic 
flux [189]. However, the radio-sensitization achieved 
by TFP was attributed to impaired homologous 
recombination during radiation-induced DDR, with 
no mention of abrogating RDT-induced immune- 
suppressive responses [184].  

Qi Xu et al., developed a core-shell copper 
selenide-coated gold (Au@Cu2-xSe) NPs which were 
shown to minimally affect lysosomal pH, and to 
prominently block the autophagic flux [190]. This 
resulted in radio-sensitization and tumor eradication, 
leading to prolonged survival of orthotopic mouse 
xenograft GBM model harboring human U-87MG 
cells (median survival 42 vs 29 days, for combined 
Au@CS + X-Ray treatment vs. X-Ray alone) [190]. 
These NPs required focused ultrasound (US) to better 
traverse the BBB and reach the intracranial tumor site.  

Chloroquine  
The anti-malarial drug CQ (Figure 3) has been 

widely studied in the treatment of various 
pathological disorders [191] including cancer 
[192,193]. Its lysosomotropic properties have been 
exploited for lysosome alkalinization (as discussed in 
the immunotherapy chapter) and autophagy 
inhibition [194]. These properties have also been 
exploited to sensitize tumors to RDT, primarily GBM.  

Glioma initiating cells (GICs) [195] are 
radio-chemo-resistant stem-like cells responsible for 
relapse following treatment of GBM with RDT 
[196,197]. Early studies demonstrated that enhanced 
autophagy promotes differentiation of GICs [198], 
decreases their tumorigenicity [199] and restores their 
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radio-sensitivity [200]. In contrast, in recent years, 
autophagy inhibitors were shown to increase 
sensitivity of GICs to both RDT [201] and 
chemotherapy [202]. Chenguang Li et al., settled the 
dispute by showing that inhibition of autophagy at 
different stages of the process has distinct effects 
[203]. Blocking the autophagic flux at the end of the 
process, i.e., autophagosome-lysosome fusion and/or 
content degradation, leads to the accumulation of 
degradative vacuoles, and resensitizes GBM cells to 
anti-cancer treatments. 

Autophagy inhibition by CQ at the stage of 
autophagosome-lysosome fusion [194] potentiated the 
radio-sensitivity of GICs isolated from the human 
glioma cell line U87 [201]. The combination of CQ and 
X-ray markedly decreased the clonogenic surviving 
fraction of GICs by ~10-fold compared to X-ray alone, 
and increased apoptosis by a factor of > 2-fold. 
Finally, the combination exhibited a synergistic 
activity on GICs generated tumor spheres, decreasing 
both their numbers and diameters [201]. 

The potential of CQ in restoring radio-sensitivity 
to GBM has been tested in several clinical trials over 
the past 20 years with encouraging outcomes (Table 
S1) [204–209]. When presenting increased progression 
free survival (PFS) and median survival time after 
surgery for CQ-treated patients, it emerged that these 
clinical trials could have been the initiators of routine 
CQ administration in GBM treatment. However, the 
patient numbers in all these trials were too small to 
attain statistical significance and draw definitive 
conclusions. For example, the Sotelo group published 
the results of a prospective controlled randomized 
trial, where nine patients receiving an additional daily 
dose of 150-mg CQ to the radiochemotherapy, were 
compared to nine control patients. The mean survival 
time was 31±5 and 10.6±2 months, respectively, 
p<0.0002 [204]. Later, the same group published a 
post-surgery median survival time of 24 months for 
CQ-treated patients (n=15) and 11 months for control 
patients (n=15), with double the number of survivors 
in the CQ-treated patients at the end of observation (p 
= 0.139) [205]. Furthermore, a study on the treatment 
of recurrent GBM (rGBM), retrospectively compared 
33 patients in a control group receiving only 
adjuvant-radiochemotherapy (aRCT) to those 
receiving aRCT+ bevacizumab (BEV, n = 5) or the 
triple combination: aRCT+BEV+CQ (n = 4). Median 
post recurrence survival times were 9.63, 12.97 and 
23.92 months, respectively, p = 0.022 [209].  

Some beneficial effects were clinically attributed 
to the addition of CQ in combination with standard 
chemotherapy, in case of advanced or metastatic 
anthracycline-refractory breast cancer [210] and 
metastatic or unresectable pancreatic cancer [211] 

(Table S1). The maximal tolerable CQ dose in clinical 
trials was found to be 200-250 mg/day [208,209,212]. 
Higher doses of CQ elicited multiple adverse effects, 
including irreversible blurred vision and vomiting 
[208]. Although CQ is an excellent lysosomal 
alkalinizing agent, its tolerable dose might not be 
sufficient to allow for effective autophagy inhibition 
required for chemo/radio/immuno-sensitization. 
One plausible modality to circumvent these adverse 
effects of high dose CQ is its encapsulation and tumor 
targeting [213].  

CQ encapsulation 
Temozolomide (TMZ), a DNA alkylating and 

methylating agent, is the first-line chemotherapeutic 
drug in the treatment of GBM and anaplastic 
astrocytoma [214,215]. However, like most cytotoxic 
drugs, TMZ inflicts adverse effects with up to 20% of 
glioma patients suffering from thrombocytopenia 
[216]. The combination of TMZ and CQ has been 
shown to bear a synergistic effect in eradicating GBM 
cells [217,218], primarily via lysosomal dysfunction 
and autophagy modulation [218]. Furthermore, this 
combination displayed promising results in clinical 
trials [205,208]. Hence, the combined encapsulation of 
these drugs in targeted NPs has the potential to exert 
synergistic anti-tumor effects without harming 
healthy tissues.  

Mesoporous silica NPs (MSNs) have been 
extensively used experimentally for drug delivery in 
vivo [219]. The incorporation of polydopamine (PDA) 
into MSNs allows to modify the surface of the NPs 
and attach specific ligands for cancer targeting [220]. 
PDA also adds a pH-responsive element to the NPs as 
it undergoes degradation under acidic conditions, 
enhancing drug release in lysosomes or in the acidic 
TME [221,222]. The arginyl-glycyl-aspartic acid (RGD) 
tripeptide [223,224] is an established ligand of αvβ3 
integrin used for in vivo tumor mapping and targeting 
[225–227]. The surface integrin αvβ3 is crucial for 
tumor angiogenesis and is highly expressed 
predominantly in new blood vessels [228,229], as well 
as various tumors [230–234] including GBM [230,235]. 
TMZ and CQ were co-loaded into MSNs coated with 
PDA decorated with RGD, designated TMZ/ 
CQ@MSN-RGD [236]. In vitro growth inhibition 
assays, using the αvβ3 integrin expressing human 
GBM cell line U87 [237], showed a 4-fold lower IC50 
value for TMZ/CQ@MSN-RGD compared to free 
TMZ (24.5 vs. 104.3 µg/ml, respectively), while 
TMZ/CQ@MSN-RGD had little effect (< 15%) on the 
viability of rat cortical neuronal cells, even at a high 
concentration of 1 mg/ml. These results suggest the 
specificity of the NPs for GBM cells. By accumulating 
in lysosomes (following endocytosis), inhibiting 
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autophagy, and enhancing apoptosis, TMZ/ 
CQ@MSN-RGD inhibited tumor growth in U87 cells 
xenograft bearing mice, twice as much as free TMZ, 
with no apparent toxicity to healthy organs [236].  

A cyclic RGD peptide was also used to coat lipid 
NPs (LNPs) co-loaded with CQ and the anti-malarial 
drug dihydroartemisinin (DHA) [238]. Apart from 
integrin αvβ3 being a target, RGD is also an established 
ligand of integrin αvβ6 [224,239,240], which is highly 
overexpressed in CRC, where it enhances tumor 
aggressiveness [241–244]. DHA is considered a 
sensitizing agent shown to increase ROS levels in 
cancer cells [245–247], however, its pharmacologic 
effect as a single agent is usually abrogated by the 
activation of protective autophagy [248–250]. Hence, 
it was determined that DHA should be combined 
with other cytotoxic agents [251], preferably an 
autophagy inhibitor [252,253]. This was the rational 
for the design of LNPs co-loaded with CQ and DHA 
and decorated with RGD (RLNP/DC) for the 
treatment of CRC [238]. Even when loaded with a 
relatively low CQ concentration of 7.5 µM, RLNP/DC 
exhibited superior potency in inhibiting colony 
formation, increasing ROS production, inhibiting 
autophagy, and increasing apoptosis in CRC HCT116 
cells compared to free CQ+DHA. The results obtained 
from in vitro invasion and migration assays suggested 
an anti-metastatic potential for RLNP/DC. 
Consistently in vivo, murine HCT116 cell models of 
CRC and metastasis, presented with ~3-fold less CRC 
tumors, which were ~3-fold smaller upon treatment 
with RLNP/DC, compared to free CQ+DHA. 
RLNP/DC-treated mice also developed half the 
number of liver metastases than those treated with 
free drugs, and exhibited a 25% increase in survival 
rates, with all mice being alive at the end of the 60 
days experiment. RLNP/DC-treated mice also 
maintained the highest body weight throughout the 
experiment [238]. 

Encapsulation of hydroxychloroquine 
The devastating pancreatic ductal 

adenocarcinoma (PDAC) [254,255] has a unique TME 
characterized by hyperactivated stromal fibroblasts, 
effective immunosuppression, and an elevated dense 
extracellular matrix (ECM) deposition known as 
desmoplasia [256] (Figure 4). This physical barrier, 
promoted by high levels of autophagy [257–259], 
limits the delivery and efficacy of chemotherapy [260] 
and immunotherapy [261], while autophagy supports 
immune evasion [101,102]. Drug encapsulation has 
been tested to help penetrate this dense desmoplastic 
ECM barrier and target stromal cancer associated 
fibroblasts (CAFs) and tumor cells [262,263]. PDAC 
cells overexpress integrins αvβ6 [264] and αvβ3 

[234,265] and thus are good targets for RGD- 
decorated NPs. The CQ derivative 
hydroxychloroquine (HCQ, Figure 3) has similar 
lysosomotropic properties and anti-cancer modes of 
action to CQ by alkalinizing lysosomes and inhibiting 
autophagy [193,266]. HCQ has been shown to be 
~40% less toxic in animals [267] and have less adverse 
effects in humans [268], and has been clinically 
explored in the treatment of PDAC (Table S1) [269–
274]. For example, pre-operative treatment of PDAC 
patients with gemcitabine and HCQ markedly 
increased the overall survival in patients who had a 
> 51% increase in the autophagy marker LC3-II in 
circulating peripheral blood mononuclear cells (34.8 
vs. 10.8 months, p < 0.05) [275]. Moreover, HCQ was 
shown to possess antifibrotic activity, by reducing 
collagen levels and inhibiting ECM synthesis in 4T1 
mouse tumor models [258]. These findings led to the 
design of TR-PTX/HCQ-Lip, liposome-based NPs 
decorated with a multifunctional tandem peptide 
TH-RGD (TR), loaded with a combination of HCQ 
and PTX [276]. TR consists of a targeting cyclic RGD 
tripeptide and a pH-responsive cell-penetrating 
peptide (CPP) [277]. CPP should become protonated 
under the acidic pH of the TME, thus converting its 
charge from negative to positive and facilitating its 
membrane penetration by electrostatic forces, 
particularly between the positive charge of the CPP 
and the negatively charged polar head groups of 
membrane phospholipids [278,279]. This enhances the 
RGD-based specificity of the liposomes to tumors. The 
ability of TR-PTX/HCQ-Lip to penetrate the dense 
fibrotic stroma and target the PDAC tumor was 
verified using a murine BxPC-3/NIH 3T3 
heterogenous pancreatic tumor model [276]. The 
heterogenous tumor model consisting of both CAFs 
and tumor cells is utilized to mimic the complex 
PDAC architecture and desmoplastic components 
[280]. In comparison with free HCQ and non-targeted 
HCQ-containing NPs (PEG-HCQ-Lip, PEG-PTX/ 
HCQ-Lip), TR-PTX/HCQ-Lip completely disrupted 
lysosomal accumulation of Lysotracker, and robustly 
inhibited autophagy in BxPC-3 and NIH 3T3 cells 
[276]. Autophagy inhibition and reduction in ECM 
deposition were also verified in vivo in harvested 
tumors. Moreover, TR-PTX/HCQ-Lip was superior in 
inhibiting migration and invasion of BxPC-3 cells. In 
an orthotopic BxPC-3 tumor bearing mouse model, 
administration of free PTX+HCQ had little effect on 
tumor growth, eliciting a reduction of ~15% in tumor 
growth. In contrast, TR-PTX/HCQ-Lip exerted a 
dramatic growth inhibitory effect, resulting in an 
~85% reduced tumor weight (p < 0.001). Consistent 
results were obtained with the heterogenous tumor 
mouse model, suggesting good response by CAFs. 
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Moreover, TR-PTX/HCQ-Lip completely eliminated 
any surface liver metastases, compared to 50-90 
metastatic nodules on livers of mice treated with free 
PTX+HCQ (p < 0.001) [276]. In accord with the loss of 
body weight as a hallmark of PDAC [281], all 
orthotopic BxPC-3 tumor bearing mice exhibited 
weight loss with disease progression, while those 
treated with TR-PTX/HCQ-Lip largely retained their 
original weight. Importantly, the encapsulation of 
PTX and HCQ prevented hepatic toxicity induced by 
the free drugs [276]. Collectively, these findings reveal 
a good response to HCQ as a drug adjuvant, and the 
advantages of drug encapsulation and tumor 
targeting. 

Taking advantage of autophagy a step further, 
Yang Wang et al., decided to not only prevent the 

beneficial impacts of autophagy in tumors, but to also 
use autophagy as a tumor killing approach. By both 
enhancing the first step and inhibiting the last stage of 
autophagy, the researchers induced autophagic 
catastrophic vacuolization and death of both tumor 
cells in vitro and mouse tumor models in vivo [282]. 
This was achieved by utilizing a TAT-Beclin 1 peptide 
(T-B) along with HCQ-loaded liposomes (HCQ-Lip). 
The T-B peptide consists of the transduction domain 
of the CPP TAT protein, linked to the HIV-1 
Nef-binding domain of Beclin 1 required to initiate 
autophagy [283]. Indeed, inducing the generation of 
autophagosomes by T-B and preventing their fusion 
with lysosomes via HCQ-Lip, led to the 
overwhelming synergistic accumulation of 
autophagosomes (6-7-fold over free HCQ or T-B) in 

 

 
Figure 4: The role of autophagy and inhibition of autophagy in reprograming the TME and TIME of PDAC. High levels of autophagy in cancer associated fibroblasts 
(CAFs) promote the secretion of ECM components including collagen and hyaluronan. High levels of autophagy in macrophages result in an M2 phenotype, leading to the secretion 
of TGF-β. The latter further increases autophagy in TME cells, enhances ECM stiffness and stimulates cancer cell proliferation. The dense desmoplastic barrier prevents accessibility 
of various anti-cancer drugs to the tumor cells. M2 macrophages suppress anti-tumor immune responses, stimulating the differentiation of Tregs that further suppress the immune 
system. Lysosomotropic drugs like HCQ, block autophagy, thereby reprogramming the TME and TIME as follows: 1) M2 macrophages undergo polarization to the M1 phenotype, 
thus stimulating the activity of CTLs, reducing the levels of Tregs and TGF-β. 2) The secretion of collagen and hyaluronan by CAFs is halted, thereby preventing the biosynthesis 
of new ECM. Consequently, the desmoplastic barrier is relieved, restoring the accessibility of anti-cancer drugs to the tumor cells as well as the infiltration of active immune cells. 
The normal and fibrotic pancreatic tissues shown are representative hematoxylin and eosin (H&E) histopathological staining performed on a biopsy derived from a patient during 
the initial diagnosis of PDAC. The slide was scanned using a Leica DMI8 inverted fluorescence microscope. Morphologically abnormal ducts lined with cancerous cells (green 
arrows) are surrounded by a desmoplastic environment (pale purple staining). 
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four different tumor cell lines. This led to 95% 
apoptosis/necrosis of cancer cells [282]. Treatment of 
4T1 xenograft-bearing BALB/C mice with an 
intra-tumoral injection of T–B and an intravenous 
injection of HCQ-Lip resulted in ~90% smaller tumors 
than in the control group (p < 0.001), which were 
3.3-fold smaller than those of mice treated with each 
component alone (p < 0.001). Examination of the 
resected tumors revealed vast autophagic 
vacuolization and necrotic areas at the center of the 
tumors [282]. Since HCQ is less toxic than CQ, all 
currently ongoing clinical trials, utilizing autophagy 
inhibitors to improve the outcome of cancer therapy, 
include HCQ (Table 1). 

Lys05 
A CQ derivative that has gained much interest is 

Lys05 (Figure 3), a bisaminoquinoline dimeric form of 
CQ which is 10-fold more efficacious as an autophagy 
inhibitor than HCQ in human GBM LN229 cells [284]. 
At high doses, Lys05 is such a potent autophagy 
inhibitor, that it elicited in mice an intestinal 
phenotype resembling genetic defects in the 
autophagy gene ATG16L1 [284]. Unlike HCQ, Lys05 
was shown to have single-agent antitumor activity 
without untoward toxicity in mice bearing HT-29 
CRC xenografts at low doses (i.e., 10 mg/kg and 40 
mg/kg), hence achieving the goal of preventing 
adverse effects [284]. The mode of action of Lys05 was 
demonstrated using the GBM U251 and LN229 cell 
lines [44]. Following its accumulation in lysosomes, 

Lys05 induced LMP, resulting in lysosomal 
alkalinization and content release, resulting in 
mitochondrial depolarization and tumor cell death. 
While Lys05-induced lysosomal dysfunction did not 
prevent the fusion of lysosomes with 
autophagosomes, the degradation within 
autolysosomes was impaired, hence inhibiting the 
autophagy flux [44]. In accord with the 
immune-suppressive effects of irradiation detailed 
above, irradiation of U251 and LN229 cells resulted in 
increased CTSB activity. In this respect, Lys05 was 
shown to robustly enhance the cytotoxic effect of 
irradiation in vitro via LMP and elevated 
irradiation-induced DNA damage [44].  

Overcoming resistance to tyrosine kinase 
inhibitors  

Tyrosine kinase inhibitors (TKIs) have truly 
revolutionized the treatment of human malignancies 
[285–287]. However, the efficacy of cancer treatment 
with TKIs has been hampered by the frequent 
emergence of multiple mechanisms of TKI resistance 
[288–290]. In this respect, various TKIs are 
hydrophobic weak bases which highly accumulate in 
lysosomes, thereby being sequestered away from their 
kinase target [291,292]. In fact, many TKIs were 
shown to enhance protective autophagy [293–299] 
which constitutes a major resistance mechanism 
[293,298].  

 

Table 1: Ongoing clinical trials using a lysosome disrupting agent as an autophagy inhibitor to enhance cancer 
treatment outcome. All clinical trials utilized hydroxychloroquine in addition to the base therapy. 

Clinical trial  Cancer type Base therapy mode ClinicalTrials.gov identifier 
Phase I/II Solid tumors Combinations of metformin, sirolimus, dasatanib, nelfinavir NCT05036226 
Phase II Refractory solid tumors Devimistat and 5-Fluorouracil or gemcitabine  NCT05733000 
Phase I Advanced solid tumors MK2206 (highly selective AKT inhibitor) NCT01480154 
Proof of principle Prostate cancer A placebo-controlled study NCT06408298 
Phase II Serous ovarian cancer Nelfinavir mesylate, bevacizumab NCT06971744 
Interventional Nasopharyngeal carcinoma Chemotherapy and radiotherapy pretreatment NCT06389201 
Phase I/II Recurrent brain tumors Dabrafenib and/or trametinib NCT04201457 
Phase I/II PDAC mFOLFIRINOX NCT04911816 
Phase 0/I PDAC Paricalcitol and losartan  NCT05365893 
Phase II Metastatic PDAC Trametinib  NCT05518110 
Phase I Metastatic PDAC Trametinib  NCT03825289 
Phase I Metastatic PDAC Chlorphenesin Carbamate and mFOLFIRINOX NCT05083780 
Phase II Metastatic PDAC Paricalcitol, gemcitabine and nab-paclitaxel  NCT04524702 
Phase II Advanced NSCLC Erlotinib NCT00977470 
Phase II Metastatic CRC 5-Fluorouracil, irinotecan and bevacizumab NCT05843188 
Phase II Metastatic CRC Encorafenib and cetuximab or panitumumab  NCT05576896 
Phase I/II Recurrent osteosarcoma Gemcitabine and docetaxel NCT03598595 
Phase I/II Metastatic melanoma Nivolumab or nivolumab/ipilimumab NCT04464759 
Phase I/II Advanced breast cancer Trastuzumab deruxtecan or sacituzumab govitecan NCT06328387 
Phase II Dormant breast cancer Palbociclib NCT04841148 
Phase II Dormant breast cancer Everolimus NCT03032406 

Abbreviations: CRC: colorectal cancer. mFOLFIRINOX: modified FOLFIRINOX using 80% of drug doses; NSCLC: non-small cell lung cancer; PDAC: pancreatic ductal 
adenocarcinoma.  
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Clear cell ovarian carcinoma (CCOC) is a 
subtype of ovarian cancer characterized by intrinsic 
chemoresistance, including to established TKIs 
[300,301]. Sunitinib, a small-molecule multi-targeted 
TKI [302,303], initially elicited a good response in two 
CCOC patients [304], but had little effect in a clinical 
trial [305]. A suggested mechanism of sunitinib 
resistance was its accumulation and sequestration in 
lysosomes [306–308], a mechanism that could be 
exploited for LCD by PDT [309,310]. At low 
concentrations, sunitinib was shown to impair 
autophagy, however at clinically relevant cytotoxic 
drug levels, sunitinib increased the autophagy flux 
[294,295]. Thus, several studies have shown the 
benefit of combining sunitinib treatment with an 
autophagy inhibitor [311–314], as was the case with 
CCOC [315]. The combination of sunitinib and Lys05 
exerted a synergistic growth inhibitory effect on three 
CCOC cell lines compared to each drug alone; an 
effect that was recapitulated by combining sunitinib 
with autophagy protein 5 (ATG5) siRNA. The effect of 
the combined treatment was further explored in vivo 
in heterotopic murine models bearing the human 
CCOC cells TOV21G and OVTOKO. Mice receiving 
this combination treatment exhibited a substantial 
reduction of 45% (p < 0.01) and 54% (p < 0.0001) in 
tumor growth compared with mice treated with 
monotherapy of sunitinib or Lys05, respectively [315]. 

Chronic myeloid leukemia (CML) is successfully 
treated with TKIs including imatinib, nilotinib, 
dasatinib, bosutinib and the newer TKI asciminib 
[316,317]. However, leukemic stem cells (LSCs) are 
insensitive to TKIs and persist as a minimal residual 
disease (MRD) source, resulting in relapse [318–320]. 
In this respect, inhibition of autophagy has been 
shown to sensitize CML cells to TKIs [321,322]. Using 
a CML patient-derived xenograft model, Pablo 
Baquero et al., showed that hematopoietic LSCs 
exhibit an increased autophagic flux compared to 
non-leukemic cells [323]. Remarkably, treatment of 
these leukemic mice with Lys05 resulted in autophagy 
inhibition, while HCQ had no inhibitory effect. The 
latter results were recapitulated in stem cell-enriched 
(CD34+) cells isolated from CML patients. Lys05 
induced autophagy inhibition, which reduced LSCs 
quiescence and promoted myeloid cell expansion and 
maturation in the CML mouse model [323]. Lastly, the 
combination of Lys05 and nilotinib, a second 
generation TKI [324,325] that was shown to induce 
autophagy [296,297], resulted in a significant additive 
therapeutic effect by reducing the fraction of human 
CD45+ cells in the bone marrow of these CML mouse 
model (p = 0.05), while HCQ had no additive 
pharmacological effect [323]. CD45 is a pan-leukocyte 
marker expressed on nearly all hematopoietic cells, 

including hematopoietic stem cells [326]. 
The most common type of leukemia, chronic 

lymphocytic leukemia (CLL), accounts for ~33% of 
newly diagnosed leukemias in the US [327,328]. 
Survival of CLL cells relies on B‐cell receptor (BCR) 
signaling [329,330], which is conveyed through 
various kinases, including the pivotal Bruton's 
tyrosine kinase (BTK) [331,332]. While the TKI 
ibrutinib, an irreversible inhibitor of BTK [333,334] 
which induces autophagy [335,336], is considered to 
have revolutionized CLL treatment, patients still 
present acquired drug resistance and low complete 
remission rates [337,338]. Various studies have 
demonstrated the hypersensitivity of CLL cells to LDs 
in comparison to healthy B-cells [339–341]. Hence, the 
combination of ibrutinib with lysosome-sensitizing 
agents has been explored [342,343]. This included the 
repurposing of widely used cationic amphiphilic 
antihistamines (CAAs) which have recently been 
recognized as LDs [60,63,69,343–347]. These CAAs, 
including for example desloratadine, clemastine, and 
ebastine, bear a specific chemical structure containing 
hydrophobic rings and a hydrophilic amine group. 
This structure allows them on the one hand to 
traverse cell membranes and on the other hand 
undergo accumulation in acidic lysosomes upon 
amine group protonation.  

Sonodynamic therapy 
RDT using X ray has an advantage of deep tissue 

penetration, enabling tumor targeting throughout the 
body [348]. However, irradiation has inevitable side 
effects including secondary tumors induced by this 
mutagenic treatment [349], radiation-induced 
vasculopathy [350], cardiovascular disorders [351], 
and serious fatigue [352], all of which limit the 
biomedical application of RDT. PDT, which combines 
light energy with a wavelength compatible 
photosensitizer, is considered a well-established 
method for cancer treatment, including via lysosomal 
damage [71–76]. However, PDT has many limitations 
and disadvantages [353,354]; primarily, near-infrared‐
based PDT laser has poor tissue penetration 
(~1-5 mm) [355,356], requires photosensitizers at 
specific wavelengths and induces serious 
photosensitivity of healthy tissues like the skin [357].  

In comparison to RDT and PDT, US-based 
sonodynamic therapy (SDT) has high tissue 
penetration capacity (> 10 cm) [358] and displays 
negligible side effects [359]. SDT is useful for drug 
delivery [360,361], including for the temporary 
opening of the BBB [362] to facilitate delivery of drugs 
for the treatment of various CNS malignancies [363] 
including GBM [364] and brain metastases [365]. SDT 
is also used with various sonosensitizers to generate 
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cytotoxic ROS for cancer therapeutics [359,365,366], 
including immunotherapy [367–371], eliciting the 
desirable abscopal effect [366]. However, as observed 
with other anti-cancer treatment modalities, SDT can 
induce autophagy which mitigates the anti-cancer 
therapeutic effects [372–375]. Thus, combining SDT 
with lysosome-targeted autophagy inhibitors restores 
tumor sensitivity to treatment [376–379], and induces 
LMP-driven ICD, stimulating an adaptive immune 
response [114].  

Achieving both inhibition of autophagy and 
LMP using SDT was demonstrated by Yong Liu et al. 
[379]. This group implemented an innovative NP 
strategy by using a piezoelectric material, which can 
convert mechanical pressure into electrical energy 
[380,381], to generate Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) 
NPs [379]. Following endocytosis, these BCZT NPs 
localized within lysosomes of murine B16 melanoma 
cells, where they had only minor deleterious effects 
on lysosomal function. However, during a 6 min 
application of 1.5 W/cm2 US, the US-mediated 
mechanical forces [382] caused the charge centers 
within the BCZT NPs to shift, resulting in a dipole 
moment [383] and consequent formation of (e-) 
electrons on their surface [379]. These electrons 
interacted with the abundant protons (H+) in the 
lysosomes to produce hydrogen gas (H2), thereby 
drastically alkalinizing the lysosomes. This resulted in 
a 75% reduction in lysosomal acid phosphatase 
activity and robust LMP, leading to autophagy 
inhibition and rapid cell death. The combination of 
BCZT NPs + US was also tested in vivo on B16 
tumor-bearing mice, where these NPs consistently 
accumulated in the tumor’s lysosomes. The combined 
therapy with BCZT NPs + US displayed an efficacious 
86.1% tumor suppression rate (p < 0.0001), while the 
BCZT NPs alone elicited a non-significant 10% 
reduction in tumor volume. This allows for US- 
directed targeted therapy, even if the NPs themselves 
are not tumor specific [379].  

An additional piezo-sonosensitizer was 
designed by Xianbo Wu et al., who synthesized a 
novel O2 self-sufficient Ir-C3N5 nanocomplex, 
composed of a nitrogen-rich carbon nitride (C3N5) 
nanosheet and 30% iridium(III) [384]. Ir-C3N5 

exhibited a strong dipole moment and consequent 
high piezoelectric catalytic performance under US. 
The surface electrons reacted with O2 to generate 
singlet oxygen (1O2), and the intermediate ·O2– reacted 
with additional electrons to form H2O2, followed by 
H2O2 decomposition to generate ·OH, thus producing 
high ROS levels. Moreover, as a self-sufficient O2 
producer, Ir-C3N5 can be used under hypoxic 
conditions, which exist in both solid and 
hematological malignancies [385]. When incubated 

with human A-375 melanoma cells, Ir-C3N5 was 
shown to accumulate in lysosomes, though no 
explanation was given to this specific organelle 
targeting [384]. However, since the accumulation in 
lysosomes was not time dependent, this probably did 
not occur via endocytosis, and the asymmetric 
structure of the C3N5 component with positive and 
negative charge centers, probably conferred 
lysosomotropic characteristics. Upon US activation 
(0.5W, 1 MHz, 3 min), lysosomal Ir-C3N5 generated 
high levels of ROS leading to LMP. The latter induced 
robust autophagy inhibition and cell death, ~70% 
apoptosis and necrosis for Ir-C3N5 + US vs ~10% for 
Ir-C3N5 and only ~3% in the control group. To verify 
that Ir-C3N5 + US induced ICD, the authors conducted 
an in vitro transwell macrophage polarization assay. 
As controls for M1 and M2 polarization, mouse 
J774A.1 macrophages were incubated with the 
canonical stimuli LPS and IL-4 for M1 and M2, 
respectively. Apoptotic A-375 cells following 
treatment with Ir-C3N5 + US, stimulated M1 
polarization as strong as LPS, including the secretion 
of the pro-inflammatory cytokines TNFα and IL-6. 
Using subcutaneous murine B16-F10 tumor models, 
Ir-C3N5 + US was shown to stimulate CTLs infiltration 
into the tumor and lymph nodes. This stimulation 
resulted in the complete inhibition of both the 
primary tumor and distant tumor growth as well as 
eliminated lung metastases, suggesting an efficient 
abscopal effect. The combined treatment with Ir-C3N5 
+ US increased the survival rate of the mice beyond 
the scope of the experiment (> 50 days) [384]. 

Future perspectives 
The current review highlights the burning 

necessity of simultaneously targeting tumor cells as 
well as the TME and tumor immune 
microenvironment (TIME) [386]. Targeting only 
tumor cells often results in chemoresistance, as the 
TME and TIME actively promote tumor cell survival, 
growth, invasion, immune evasion and metastasis 
[387–391]. Lysosomal modulating agents that impair 
autophagy simultaneously target the tumor and its 
TME and TIME, while minimizing adverse effects. 
Targeting lysosomes of TAMs and stroma cells can 
convert an immunosuppressive microenvironment 
into an immune-supportive one, enhancing the 
efficacy of immunotherapies. Several clinical trials 
using CQ/HCQ in combination therapy, have shown 
great promise (Table S1) [53] and warrant further 
dedicated studies. This is particularly relevant in high 
mortality cancer types with no efficacious therapy like 
PDAC. As abovementioned, PDAC is characterized 
by a highly dense desmoplasia. The latter is present in 
other types of tumors, e.g., cervical cancer [392], 
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breast cancer [393], lung cancer [394], squamous cell 
carcinoma [395] and small intestine neuroendocrine 
tumors [396], leading to chemoresistance and dismal 
prognosis [392,395,397–399]. Thus, it is paramount to 
overcome this desmoplastic barrier for efficient cancer 
eradication. In this regard, recent studies reveal that 
desmoplasia is promoted by autophagy [257–259]. 
Hence, we find autophagy inhibition via lysosomal 
targeting a promising therapeutic strategy. Figure 4 
illustrates the role of autophagy in shaping the TME 
and TIME of PDAC, and the reversal effect of 
autophagy inhibition by lysosome targeting agents. 
The anti-fibrotic activity of HCQ inhibits ECM 
synthesis by reducing the secretion of collagen and 
hyaluronan by stromal fibroblasts [258,276]. The 
polarization of macrophages to the M1 phenotype 
reduces the levels of TGF-β which promotes 
autophagy and ECM stiffness [400]. Reduction in 
desmoplasia along with immune stimulation restores 
chemotherapeutic drug accessibility to the tumor and 
chemosensitivity, as well as an enhanced anti-tumor 
immune response. It should be noted that HCQ is 
used in this demonstration since it was shown to 
reduce desmoplasia in murine models [258,276]. 
However, since an HCQ dose of 1,200 mg/day is 
required to induce inhibition of autophagy in cancer 
patients [275,401], a dose that can elicit grade 3-4 
adverse effects [401–403], other more potent lysosome 
disrupting agents should be tested, or HCQ should be 
encapsulated. A potential candidate as an HCQ 
substitute is the FDA approved TKI nintedanib [404]. 
From a mechanistic perspective, nintedanib blocks 
multiple tyrosine kinase receptors including VEGFR, 
PDGFR, and FGFR, which are paramount in the 
signaling pathways which culminate in pathological 
lung fibrosis. Nintedanib accumulates in the 
membrane of lysosomes and disrupts their integrity 
and function [59,405,406], leading to autophagy 
inhibition and autophagic cell death [405,407]. 
Consistently, nintedanib has displayed potent 
antifibrotic activities that reprogram the TME by 
reducing ECM secretion by CAFs as well as 
enhancing immunity and reducing TGF-β levels [408–
410]. While these abilities are exploited for the 
treatment of lung fibrosis [411,412], nintedanib is still 
primarily referred to as a TKI and not as a bona fide 
lysosomotropic agent. Based on the established 
anti-fibrotic activity of nintedanib, clinical trials are 
warranted that will explore its plausible antitumor 
activity as a desmoplasia inhibitor, as monotherapy or 
in combination with other chemotherapeutics, in 
desmoplastic cancers like PDAC. In this respect, a 
clinical trial has been already conducted in PDAC 
(NCT02902484). 

In a recent review, Stephanie Nagy et al., 

retrospectively analyzed the impact of CAAs on the 
efficiency of immune checkpoint inhibitors 
(ICIs)-based immunotherapy in cancer patients [413]. 
The six studies included in this analysis, 
encompassing 4,171 patients with different types of 
malignancies, showed great potential. Collectively, 
patients who received a combination of CAAs and 
ICIs displayed a significant improvement in overall 
survival rates and longer progression-free survival 
rates compared to patients who did not receive 
antihistamines [413]. Considering the minimal 
adverse effects of second generation CAAs [414], and 
their ability to induce lysosomal alkalinization and 
LMP [69,343,345,347], further clinical evaluation 
should be performed. The same can be conveyed 
about ginsenosides which exhibit multiple beneficial 
properties, including health improvement, anti-tumor 
activity and enhanced immunity. Thus, drug 
repurposing to generate efficacious combination 
therapies targeting the tumor as well as the stroma 
should be in the epicenter of future innovative 
therapeutic drug development efforts (Figure 5). 

Abbreviations 
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selenide-coated gold NPs; BafA1: bafilomycin A1; 
BBB: blood-brain-barrier; BCR: B‐cell receptor; BCZT: 
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lymphocytic leukemia; CML: chronic myeloid 
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NCF1: neutrophil cytosolic factor 1; NK: natural killer; 
NP: nanoparticle; NSCLC: non-small cell lung cancer; 
PDA: polydopamine; PDAC: pancreatic ductal 
adenocarcinoma; PDGF: platelet-derived growth 
factor; PDT: photodynamic therapy; PFS: progression 
free survival; PGN: pH-gated nanoadjuvant; PGNs: 
pH-gated nanoparticles; PTX: paclitaxel; RDT: 
radiation therapy, radiotherapy; Rg3-LPs: ginsenoside 
Rg3 liposomes; rGBM: recurrent GBM; RGD: 
arginyl-glycyl-aspartic acid tripeptide; Rh2-lipo: 
ginsenosides Rh2 liposome; RLNP/DC: LNPs 
co-loaded with CQ and DHA, and decorated with 
RGD; SDT: sonodynamic therapy; TAMs: tumor 
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TDLN: tumor-draining lymph nodes; TFP: 
trifluoperazine; TGF-β: transforming growth factor β; 
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tyrosine kinase inhibitors; TLR: toll like receptor; 
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necrosis factor α; TR: a targeting cyclic RGD 
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regulatory T cells; TR-PTX/HCQ-Lip: liposome-based 
NPs decorated with TR, loaded with HCQ and PTX; 
UIO: ultrasmall iron oxide; UIOQM-IQ: UIO NP 
conjugated to a CTSB-cleavable peptide, an 
aggregation-induced emission fluorophore, and 
surface IQ; US: ultrasound; VEGF: vascular 
endothelial growth factor; ROS: reactive oxygen 
species. 

  
 

 
Figure 5: Combining lysosomal disrupting agents with the three fundamental anti-cancer treatment modalities. The three main anti-cancer therapeutic 
modalities including chemotherapy, RDT and SDT, were all shown to increase autophagy in malignant and immune cells. This enhanced autophagy mitigates their therapeutic 
activity, by promoting an immune-suppressive TME & TIME and immune evasion, upregulated DNA damage response and repair, as well as anti-apoptosis. Adding a lysosomal 
disrupting agent to any of these three therapeutic modalities, blocks autophagy and reverses the pro-tumoral TME & TIME to anti-tumor environment.  
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