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Abstract

The progression and therapeutic response of clear cell renal cell carcinoma (ccRCC) are critically shaped
by the complex interactions between tumor cell heterogeneity and the tumor immune
microenvironment (TIME). However, a comprehensive classification of the ccRCC ecosystem and its
clinical relevance is lacking. To address this, we utilized comprehensive bioinformatics approaches to
analyze ten public single-cell RNA sequencing datasets from 194 samples across 118 ccRCC patients.
Across 1,172,154 cells, we identified four TIME subtypes (immune activation, innate immunity,
immunosuppressive myeloid [ISM], and immune exclusion) and six functional states of tumor cells
(metabolic, angiogenic, stress-responsive, antigen-presenting, cell cycling, and epithelial-mesenchymal
transition [EMT]). The interplay between these components defined four immune ecosystems, among
which the ISM subtype, coupled with the EMT tumor state was associated with the poorest prognosis.
Using machine learning-based prognostic modeling, we highlighted FKBP10 as a critical prognostic gene.
Mechanistically, we demonstrated that FKBPI0 not only promoted EMT but also activated the
MEK/ERK/ELF3 signaling axis, leading to an increased secretion of CXCL8 by tumor cells. Tumor-derived
CXCLS, in turn, drove macrophage M2 polarization and myeloid-derived suppressor cell (MDSC)
recruitment, thereby reinforcing an immunosuppressive TIME. Furthermore, targeting FKBP10
synergized with anti-PD-1 therapy in suppressing tumor growth in vivo. Our work provides a
comprehensive molecular atlas of the ccRCC ecosystem, establishes FKBP10 as a key regulator of
immune suppression, and highlights its potential as a therapeutic target for personalized immunotherapy.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the  cancer [1]. Localized ccRCC shows surgical curability,
most common and aggressive subtype of kidney  but metastatic disease remains refractory to
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conventional chemotherapy. Although immune
checkpoint blockade (ICB) has improved outcomes
for a subset of patients [2-4], durable responses
remain limited to about 30-40% of patients [5-7]. This
therapeutic plateau emphasizes the critical need to
better understand the mechanisms of immune evasion
in the tumor microenvironment (TME).

The ccRCC TME is a dynamic ecosystem
composed of heterogeneous tumor cells and stromal
components. Recent multi-omic and single-cell
transcriptomic studies have begun to reveal this
complexity, uncovering distinct molecular subtypes
[2, 8-12], immune cell states [13-20], and spatial
architectures [21, 22]. However, two critical
limitations persist. First, many current analyses treat
the tumor and its microenvironment as separate
entities, ignoring their dynamic co-evolution and the
integrated network of cross-talk that functionally
defines the tumor ecosystem [19, 23]. Furthermore,
previous studies have not connected TME subtypes to
immunotherapeutic responses in ccRCC. This gap
limits a comprehensive understanding of ccRCC
biology and constrains the development of
ecosystem-level  prognostic =~ biomarkers  and
therapeutic strategies.

To address this gap, we propose an integrated
framework that combines the composition of the
TIME, the states of malignant cells, and intercellular
communication networks to define stable, clinically
relevant tumor ecosystems in ccRCC. This study aims
to decode the ccRCC ecosystem by integrating
multiple single-cell transcriptomic datasets. Our
specific objectives were: (1) to define coherent TIME
subtypes and epithelial cell states; (2) to integrate
these components into comprehensive tumor
ecosystems; (3) to establish a prognostic model based
on ecosystem-specific gene signatures; and (4) to
identify and experimentally validate key molecular
drivers in high-risk ecosystem.

Our investigation identified FK506 binding
protein 10 (FKBP10) as a key candidate gene
associated with high-risk ecosystems. FKBP10 is a
member of FKBP family which contains a
characteristic active peptidyl prolyl isomerases
(PPIase) domain. PPlase is responsible for catalyzing
the interconversion of cis/trans prolyl conformations,
thus inducing rate-limiting change in protein
conformation [24]. Members of this family are
associated with several cellular processes, including
protein folding, stability and trafficking, kinase
activity, and receptor signaling [25]. FKBP family is
important in regulating signaling pathways involved
in inflammation, adaptive immune response, cancer,
and developmental biology [26]. Although prior
studies have linked FKBP10 to other cancers [27-30],

its functional role, particularly in reprogramming the
ccRCC immune microenvironment, remains
unexplored. Our mechanistic investigations show that
FKBP10 promotes tumor metastasis through the
MEK/ERK/ELF3 signaling axis, stimulating CXCL8
secretion that in turn drives M2 macrophage
polarization and MDSC recruitment. Thus, our work
not only presents a comprehensive atlas of the ccRCC
ecosystem but also highlights FKBP10 as a central
mediator of immunosuppressive niche formation,
offering a novel therapeutic target for this aggressive
malignancy.

Methods
Data Availability

The entire study design is succinctly illustrated
in a detailed flowchart (Supplementary Fig. S1).
Detailed information about resources and reagents is
provided in Supplementary Table S1. The acquisition
of single-cell RNA-sequencing (scRNA-seq) datasets
was facilitated from sources including: GSE131685
[18], GSE159115 [17], GSE207493 [19], GSE224630 [31],
SRZ190804 [21], Young et al. [16], Braun et al. [13], Bi et
al. [32], Li et al. [33], Obradovic et al. [34]. The last three
datasets were used as external datasets and used for
validating our main findings. The spatial
transcriptomic data analyzed in this study, including
the H&E-stained tissue image, were obtained from the
publicly available dataset published by Meylan et al.
[22]. Bulk RNA-seq datasets were procured from The
Cancer Genome Atlas (TCGA-KIRC cohort) and
ArrayExpress (E-MTAB-1980) [35]. Additionally,
datasets from ICB-treated/CAR-T-treated cohorts
were obtained: CheckMate cohorts, detailed in Braun
et al. [23]; JAVELIN Renal 101, documented by Motzer
et al. [36]; IMvigor210 cohort [37]; VanAllen cohort
[38]; Kim cohort (GSE135222); Cho cohort
(GSE126044); Hugo cohort (GSE78220); and Lauss
cohort (GSE100797).

Multicenter Cohort and Bulk RNA Sequencing

This study utilized surgical specimens from a
multicenter cohort of 61 patients with ccRCC treated
with ICB-tyrosine kinase inhibitor (TKI) combination
therapies. Fresh tumor tissues were prospectively
collected from four Chinese medical institutions: First
Affiliated Hospital of Sun Yat-sen University
(Guangzhou, China; n = 12): Axitinib-Toripalimab (n

= 9), Axitinib-Pembrolizumab (n = 2),
Lenvatinib-Pembrolizumab (n = 1); Sun Yat-sen
University Cancer Center (Guangzhou, China; n = 21):
Axitinib-Toripalimab (n = 12),
Axitinib-Pembrolizumab (n = 6),

Lenvatinib-Pembrolizumab (n = 3); Renji Hospital,
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Shanghai Jiao Tong University (Shanghai, China; n =
13): Axitinib-Toripalimab (n = 13); Shengjing
Hospital, China Medical University (Shenyang,
China; n = 15): Axitinib-Toripalimab (n = 15).
Specimens  were obtained during surgery,
immediately snap-frozen in liquid nitrogen, and
stored at -80°C until RNA extraction.

Bulk RNA-seq libraries were prepared via the
TruSeq Stranded mRNA Library Prep Kit (Illumina)
and sequenced on an Illumina NovaSeq 6000
platform. Raw reads were processed through FastQC
for quality control, followed by adapter trimming and
filtering with Trimmomatic. Clean reads were aligned
to the GRCh38 human genome using STAR, and gene
expression counts were quantified via featureCounts.

Identification of Cellular Modules and TIME
Subtypes

To examine the cellular composition and
heterogeneity within TIME, we investigated the
co-existence patterns of different cell subpopulations
[39]. Pairwise correlation values between the
normalized frequencies of any two clusters within
individual tumor samples were quantified using the
corr.test function. These resulting correlation
coefficients were subjected to hierarchical clustering
employing the pheatmap package in R, utilizing the
Ward.D2 clustering method and correlation distance
as metrics. To avoid potential distortion of clustering
due to the limited cell number of certain clusters,
samples that contained fewer than 1,000
non-epithelial cells were excluded from this analysis.
For each patient, the cluster-normalized frequencies
of clusters from the same cellular module were
summed, and the most abundant cellular module was
designated as the dominant cellular module for this
patient. Each cellular module corresponds to a TIME
subtype, in which the phenotype was designated
based on four aspects: (1) cellular composition, (2)
marker genes expression and KEGG pathways
enrichment, (3) TIME-related gene signatures as
previously described (Table S2) [22, 40], (4)
prognostic relevance verified with BisqueRNA that
predicted cell type composition in bulk expression
[41]. Finally, we identified and listed the top 10
marker genes for the five most prevalent cell types
within each module. These marker genes were
defined as the molecular signature for specific cellular
modules.

Classification of Intra-tumoral Gene
Expression Programs

Consensus non-negative matrix factorization
(cNMF) was employed to identify gene expression
programs (GEPs) in tumor samples [42]. Samples with

fewer than 100 tumor cells were filtered out, and 43
tumor samples were selected for this analysis. For
each sample, cells with fewer than 300 unique genes
and genes detected in fewer than 5 cells were filtered
out. Then we selected 2,000 genes with the most
over-dispersion, as determined by the v-score [43].
Each gene was scaled to unit variance before running
cNMF. We used cNMF with default parameters,
except for the maximum number of iterations (=200).
We adjusted the number of NMF components
(k-value) by comparing the trade-off between
predictive accuracy and solution stability, as
described by Alexandrov et al. [44]. We then obtained
two matrices for each sample: one is the usage matrix
(cellsxprograms) that captured normalized program
usage in each cell (i.e., the proportion of the cell’s
transcripts attributed to each program), and the other
is the GEP matrix (genesxprograms) that listed the
top-ranked genes within the programs according to
their loadings of the NMF factor. We retained a total
of 250 GEPs whose average cell usage was larger than
0.01 according to the Program-Ratio plots. The 250
programs were then compared by hierarchical
clustering, using one minus the Pearson correlation
coefficient over all gene scores as a distance metric.
Six clusters of signatures were manually identified
and used to define meta-programs (MPs). For each
MP, we combined the top 100 genes of each GEP and
calculated the average loading for each gene. We
summarized the total loadings for repetitive genes,
retained the original loadings for exclusive genes, and
divided the loadings for each gene by the number of
programs within the MP. Finally, the top 30 genes
with the highest loading were identified as MP
marker genes.

The functions of MPs were defined based on
hallmark pathway analysis using the GSVA, and
prognostic relevance. Prognostic associations were
determined based on the predicted cell type
composition in bulk expression by CIBERSORTx.

Jaccard Similarity Analysis

The Jaccard similarity index was calculated to
quantify the transcriptional resemblance between six
MPs of malignant cells and the signatures of 12 cell
types from PanglaoDB (https://panglaodb.se/)
(Table S3). The Jaccard index was calculated using
the top 50 marker genes with the following formula:

J(A,By=|ANB|/ |AUB|

Cell-Cell Interaction Analysis

CellphoneDB facilitated the investigation of
ligand-receptor  pairs, highlighting significant
interactions after adjusting for frequency constraints
below 0.1% or above 2% of all cluster-cluster
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combinations [39, 45]. The total number of
ligand-receptor pairs among the different clusters
within the same ecosystem was counted. We assumed
that a ligand-receptor pair was enriched in a specific
ecosystem if Ro/e > 1. First, the expected count of each
ligand-receptor pair was calculated using the y? test.
Second, using Epitools, we calculated the R,/ value
according to the following formula:

Observed
o/e

- Expected

To identify the potential ligands of myeloid cells
that drive the unique phenotype of EMT tumor cells,
we used the signature of EMT for NicheNet analysis
[46].

Establishment of Ecosystem Specific Signature
and Machine Learning-based Prognostic
Models

An ecosystem is defined as a distinct entity
formed by the hierarchical clustering of malignant cell
states and TIME subtypes, which reveals functional
interplay patterns among these components.
Ecosystem-specific signatures were established by
integrating cellular module signatures, corresponding
MP signatures, and the ten ligand-receptor pairs with
the highest R,/e within the ecosystem. The enrichment
score of ecosystem-specific signatures in bulk
RNA-seq was estimated by ssGSEA. The signature
from the most prognostically unfavorable ecosystem
was selected to construct prognostic models.

To develop a consensus immunosuppressive
myeloid and epithelial-mesenchymal transition
interactive signature (ISM-EMT-Sig) with superior
accuracy and stability, we integrated 11 machine
learning algorithms according to previous studies
[47-50]. The integrative algorithms encompassed
LASSO regression, Elastic Net (Enet), ridge
regression, Random Survival Forest (RSF), CoxBoost,
Stepwise Cox regression, Supervised Principal
Component Analysis (SuperPC), Partial Least Squares
Regression for Cox models (plsRcox), Survival
Support Vector Machine (survival-SVM), generalized
boosted regression Modeling (GBM), and Kang score.
The Kang score, in particular, was generated using an
approach similar to that used by Kang et al. [51] and
Wang et al. [52]. Specifically, algorithms such as
LASSO, Kang score, RSF, StepCox, and CoxBoost are
capable of variable screening. This enables us to use
these five algorithms for variable selection and
subsequently combine them with the remaining
algorithms to build a prognostic model. Alternatively,
we can use any of the 11 algorithms independently to
construct the model. Ultimately, this methodology
allows us to generate a total of 126 models.

The signature was generated as follows: (a)
Univariate Cox regression identified prognostic
mRNAs in the TCGA-KIRC cohort; only the genes
with an expression fold change > 1.5 or < -1.5 and an
FDR < 0.01 were selected for subsequent analysis.
Subsequent evaluation of the selected differentially
expressed genes (DEGs) for their statistical association
with patient survival wusing a wunivariate Cox
proportional hazards regression model, prioritizing
DEGs that align with survival trends (e.g., DEGs
highly expressed in the ecosystem 3 group indicating
a hazard ratio (HR) > 1 or those prevalent in other
groups with a HR < 1); (b) 126 algorithm
combinations were applied to these prognostic
mRNAs to construct predictive models within the
TCGA-KIRC cohort (training set: 70%, internal
validation set: 30%; (c) All models were evaluated
across four validation datasets (E-MTAB-1980,
CheckMate, JAVELIN, and SYSUFAH). (d) For each
model, the Harrell concordance index (C-index) was
calculated across all validation datasets. Besides, the
number of genes included in each model was defined
as model size. Considering the accuracy of the model
and its simplicity, we aimed to include as few genes as
possible (within 15 genes) to achieve the best
prediction effect. Therefore, the model with the
highest average C-index across validation datasets,
incorporating no more than 15 genes, was selected as
the optimal prognostic tool.

Colony Formation Assay

The cells were harvested at 70% confluence and
seeded into the 6-well plates. Each cell line was
seeded in triplicate. After 2 weeks of culture, cells
were fixed with formaldehyde for 15 minutes. The
cells were then stained with crystal violet staining
solution for 30 minutes. The colonies were imaged
using Amersham Imager 600 imaging system, and
were counted and analyzed using Image]J software.

Cell Proliferation Assay

The cells were counted and seeded in the 96-well
plate for 6 days. After washing the cells with PBS,
CCK8 was added to RPMI-1640 (10:90) every 24
hours. After incubation with CCK8 for 2 hours,
absorbance at 450 nm was measured using a
microplate reader.

Transwell Assay

Matrigel (diluted with sterile deionized ice-cold
water in a 1:2 ratio) was added to the membrane of the
transwell insert, and the plate was incubated for 1
hour. The cells were then seeded onto the membrane
of a 24-well transwell insert. Afterward, the migration
buffer containing chemoattractant was added below
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the 24-well transwell insert and the plate was
incubated for 24 hours. Remove the Matrigel by
gently using a cotton tipped applicator which was
infiltrated with PBS. Formaldehyde was added to the
24-well plate for 30 minutes. After washing the
transwell inserts, crystal violet staining solution was
used for cell staining. After 10 minutes, the transwell
inserts were washed three times with PBS. When
dried out, the transwell insert was observed under a
microscope and imaged by OLYMPUS IX83 inverted
imaging system [53]. Migrating cells were counted
and analyzed using Image] software.

Subcutaneous Tumorigenesis

For the subcutaneous tumor model, 769-P
human RCC cells stably transfected with lentiviral
shRNA negative control (shNC) and shFKBP10 or
vehicle and over-expression of DNASE1L3/DPEP1
were subcutaneously implanted into 4-week-old male
nude mice (2x10¢ cells/mouse).

To investigate the roles of FKBP10 and CXCLS,
769-P cells (2x10° cells/ mouse) stably transfected with
shNC or shFKBP10 were implanted into 4-week-old
male BALB/c mice, with or without CXCLS injections
every 3 days. Additionally, 769-P cells with lentiviral
vehicle or FKBP10 overexpression were implanted
into BALB/c mice. One week post-implantation, IgG
(0.1 mg/mouse), CXCL8 neutralizing antibodies
(0.1 mg/mouse), or CXCR1/2 inhibitor reparixin (30
mg/kg) in PBS were injected intraperitoneally every 2
days for 3 weeks.

Tumor size and volume were calculated as
tumor volume (mm?3) = (longest diameter) x (shortest
diameter)? x 0.5. At the endpoint, tumors were
harvested and weighed.

Immunofluorescence Staining

Immunofluorescence staining was performed on
FFPE ccRCC sections following antigen retrieval and
blocking procedures as described for
immunohistochemistry. Sections were co-incubated
with anti-CD86 (1:100) and anti-CD206 (1:200)
overnight at 4°C. Species-specific secondary
antibodies were applied for 1 hour in the dark: Alexa
Fluor 488-conjugated Goat Anti-Mouse (1:500) and
Alexa Fluor 555-conjugated Goat Anti-Rabbit (1:500).
Nuclei were stained with DAPI for 5 minutes.

Vesicle-like PLGA-based Nanoparticle (VNP)
Formulation of siRNA Drug and Application of
VNPsiRNA In Vivo

VNPsiRNA was prepared using a double
emulsion method, as previously described [54]. The
2’-O-Methyl (2'-OMe) modified siRNA was first
mixed with chloroform, containing DOTAP and

mPEG5k-b-PLGA11k (50:50), and emulsified by
sonication on ice. This primary emulsion was then
further emulsified in DEPC water through additional
sonication on ice. The chloroform was subsequently
removed using a rotary evaporator. The resulting
nanoparticle dispersion was transferred to an
ultrafiltration device and centrifuged to remove any
unencapsulated compounds. The nanoparticles
exhibited a spherical shape, with a particle size of 150
nm and an encapsulation efficiency of 49.2%. siRNA
encapsulation efficiency was determined by
high-performance liquid chromatography analysis.
For syngeneic tumor models, Renca murine RCC cells
were injected into 5- to 6-week-old male Balb/c mice
(2x10¢ cells/mouse), VNPsiRNA were administrated
via intratumoral injection (40pg/mouse every 2 days)
when tumors reached 50 mm3. Tumors were
measured every alternate day and weighed upon
harvesting.

Cytokine Array Analysis

The cytokine secretion profiles in conditioned
media from tumor cell cultures were analyzed using
the Proteome Profiler Human Cytokine Array Kit
following the manufacturer’s protocol. Briefly, tumor
cells treated with recombinant FKBP10 (1 pg/ml, 24
hours) were cultured in serum-free medium for 24
hours to eliminate exogenous protein interference.
Conditioned media were collected, centrifuged to
remove cellular debris, and aliquoted for immediate
analysis. Array data were quantified by measuring
the pixel density of duplicate spots using ImagelLab
6.1 software. Background signal from negative control
spots was subtracted, and relative cytokine levels
were normalized to internal positive controls on each
membrane. This method enabled simultaneous
semi-quantitative screening of multiple cytokines,
with sensitivity thresholds and cross-reactivity
profiles as specified by the manufacturer.

Embedded Co-culture Transwell Assay

THP-1 monocytes (human leukemia monocytic
cell line) were cultured in RPMI-1640 complete
medium supplemented with 10% FBS and 1%
penicillin/streptomycin. Macrophage differentiation
was induced by treating cell suspensions with 100
ng/mL phorbol 12-myristate 13-acetate for 24 hours.
Following incubation, differentiated M0 macrophages
were obtained through three gentle PBS washes to
remove non-adherent cells, and were then cultured in
fresh complete medium until reaching 80%
confluency.

For the co-culture assay, Transwell inserts were
placed into 24-well plates. M0 macrophages (2x10*
cells/ well) were seeded into the lower chamber, while
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cancer cells (2x10* cells/well) were plated in the
upper chamber. In the experimental groups,
recombinant human CXCLS8 (20 ng/mL) was added to
both chambers to establish a chemotactic gradient.
Control groups received equivalent volumes of PBS.
The co-culture system was maintained for 48 hours
under standard culture conditions. Cell invasive
capacity was assessed using the established Transwell
protocol as previously described.

Flow Cytometry

Tumors from mice were digested and prepared
into single-cell suspension. Cells were incubated with
antibodies for 30 minutes. The antibodies used
included CD45, CD11b, F4/80, CD80, CD86, CD206,
and Gr-1. Antibodies were used at < 1.0 pg per million
cells in a 100 pL volume. Data acquisition was
performed wusing a Beckman CytoFLEX flow
cytometer, and the collected data were analyzed with
Flow]o v10.

Prediction of Potential Transcriptional Factors

The putative promoter region of the CXCLS8 gene
was retrieved from the NCBI database (GRCh38.p14).
Based on canonical promoter annotation principles,
genomic sequence spanning 2,000 bp upstream of the
transcription start site (TSS) and 100 bp downstream
was defined as the promoter region. The genomic
sequence was extracted and validated using the NCBI
Genome Data Viewer.

To identify transcription factors (TFs) with
potential binding activity in the CXCL8 promoter, the
UCSC Genome Browser (https://genome.ucsc.edu/)
was employed [55]. Using the GRCh38/hg38 human
reference genome assembly, the promoter coordinates
(Chr4:73,738,569-73,740,669) were input into the
search interface. Publicly available ChIP-seq and
chromatin accessibility datasets were queried, and
binding events were filtered to retain only those with
a binding score > 600. To prioritize clinically relevant
TFs, differential expression analysis was performed
using the GEPIA2 database
(http:/ / gepia2.cancer-pku.cn/) [56], focusing on TFs
exhibiting significant positive correlations (P < 0.05,
Pearson correlation) with CXCL8 expression.

For the candidate TFs identified in the preceding
step, de novo motif scanning was conducted using
JASPAR (http:/ /jaspar.genereg.net/), a curated
database of TF-binding profiles [57]. A conservative
relative profile score threshold of 90% (corresponding
to a P < 1x10-%) was applied to minimize false-positive
predictions. Predicted binding sites were visualized
and annotated using JASPAR integrated analysis
tools, with genomic coordinates and motif scores
reported for all high-confidence hits.

ChlP-seq

Cross-linked chromatin was prepared by
treating cells with 1% formaldehyde, followed by
quenching with 125 mM glycine. Chromatin was
extracted using lysis buffer and sonicated to
fragments ranging from 100 to 500 bp.
Immunoprecipitation was performed overnight at
4 °C with ELF3 antibodies bound to Dynabeads. The
immunoprecipitated DNA was purified and used for
library construction with the NEBNext Ultra DNA
Library Prep Kit for lllumina. Libraries were prepared
through end repair, adapter ligation, USER enzyme
digestion, and PCR amplification. Size selection was
carried out using AMPure XP beads, and library
quality was assessed with Qubit quantification and a
high-sensitivity DNA chip. Sequencing was
performed on the Illumina NovaSeq 6000 platform to
generate 150 bp paired-end reads.

Raw sequencing reads were processed with fastp
to remove adapters, poly-N sequences, and
low-quality bases. Clean reads were aligned to the
reference genome using Bowtie2. Peak calling was
conducted with MACS2, and results were visualized
with IGV. Peak annotation was performed using the
ChlPseeker R package. Differential peak analysis was
conducted using MAnorm.

Statistical Analysis

R Project, RStudio, and Python were used for
sequencing and machine learning analysis, while
GraphPad Prism was used for the statistical analysis
of experimental data.

For intergroup comparisons, a two-tailed
Student’s t-test (parametric, normal distribution) or
Welch’'s t-test (unequal variances) was used. For
non-normally distributed data, the Wilcoxon
rank-sum test was applied. Paired t-tests were used
for paired samples, and one-way ANOVA for
multiple group comparisons. Chi-square or Fisher’s
exact tests were used for categorical data.

Survival analysis was performed using
Kaplan-Meier curves and assessed with the Log-rank
test. HR were calculated using the Cox proportional
hazards model. Pearson or Spearman correlation
coefficients were used depending on the data
distribution. Statistical significance was set at P < 0.05.

Results

Enrichment of Myeloid Cells in
Immunotherapy-Resistant ccRCC

We integrated and normalized seven public
scRNA-seq datasets comprising 73 tumor samples, 37
adjacent normal tissues, 2 thrombi, and 2 metastatic
lymph nodes from 56 individuals (Table S4). After
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stringent quality control, we obtained 639,037 cells
from 742,300 cells spanning 114 human samples (Fig.
1A; Fig. S2-3). Louvain clustering revealed six clusters
across samples spanning NK and T lymphoid, B
lymphoid, myeloid, endothelial and epithelial cells,
and fibroblasts (Fig. 1B).

We analyzed canonical marker genes for each
cell type and examined the clinical characteristics (Fig.
1C). Notably, immunotherapy-resistant patients,
especially those with lymph node metastasis,
exhibited high expression of myeloid cell markers.
Cell cycle analysis indicated that the majority of these
cells resided in the GO/ G1 phase, indicative of relative

Data exploration

Predictive models

dormancy or slow proliferation. Conversely, patients
responsive  to ipilimumab/nivolumab showed
increased expression of CD8+ T cell markers,
suggesting active immune response. In addition, our
spatial analysis uncovered regional differences in
immune cell distribution within the tumors, with
myeloid cells enriched in the lower and lateral tumor
regions, and T cells being prevalent elsewhere. These
findings suggest that resistance to ICB may be linked
to a higher presence of myeloid cells and a lower
presence of CD8+ T cells, with distinct spatial patterns
across the tumor.
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Figure 1. Single-cell transcriptional landscape of the ccRCC ecosystem. (A) Scheme of the overall study design. TIME, tumor immune microenvironment; ICB, immune
checkpoint blockade; IHC, immunohistochemistry. (B) UMAP plot showing six major cell types. Dots represent individual cells, and colors represent different cell populations.
T&NK, T lymphoid and natural killer cells. (C) Dot plot showing the marker genes for each major cell population and several clinical characteristics. Treatment refers to any
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between Near and Far. VHL+/-, with/without Von Hippel-Lindau gene mutation.

https://www.ijbs.com



Int. J. Biol. Sci. 2026, Vol. 22

1814

Cellular Module Analyses Reveal Four TIME
Subtypes

Building on these insights into myeloid cell
enrichment, we next sought to explore the broader
cellular composition of TIME to understand its
functional implications for therapy resistance. From a
cohort of 530,848 single cells, we identified 75 distinct
cell clusters (Fig. 2A; Table S5). Notably, tumors with
high tertiary lymphoid structure (TLS) signature
expression exhibited significant enrichment of
antibody-secreting plasma cells (IgG, IgA, and
IFITM3+ plasma cells) and GPR183+ memory B cells
(Fig. S4A-E). These subsets expressed key germinal
center B-cell markers (Fig. S4F), suggesting functional
germinal center reactions within the TLS. This finding
aligns with previous studies showing that in TLS+
RCCs, plasma cells secrete higher levels of IgG and
IgA, supporting the role of TLS in anti-tumor
immunity and its association with favorable
immunotherapy responses [22].

Hierarchical clustering was then applied to
investigate the functional roles of all immune cell
clusters. This helped us identify four stable cellular
modules (CMs), CM1 to CM4 (Fig. 2B). The four CMs
correspond to four TIME subtypes based on four
criteria: (1) expression of TIME-related gene
signatures (Fig. 2C; Fig. S5A-B), (2) cell cluster
proportions (Fig. 2D), (3) prognostic and ICB
responsive relevance (Fig. 2E; Fig. S5C-D), (4)
functional signaling pathway enrichment (Fig. 2F;
Table S6).

The CM1-IA subtype (immune activation, IA)
exhibited prominent immune activation signatures
encompassing co-stimulatory molecules, effector cells,
checkpoint markers, and MHC-I/II pathways
through  immunoglobulin  receptor  binding.
Dominated by effector memory
(CD8+GZMK+/CXCL13+/DUSP4+), tissue-resident
(CD8+ZNF683+) T cells, regulatory T cells
(CD+FOXP3+), and cytotoxic = NK  subsets
(GZMH+/PTGDS+), CM1-IA demonstrated
prognostic  significance with improved overall
survival (OS) in TCGA cohort and enhanced mTOR
inhibitor (everolimus) response efficacy.

The CM2-II subtype (innate immunity, II)
displayed distinct anti-tumor cytokine signatures
with enrichment of NK cells, CD16+ macrophages,
and naive CD8+ T cells (SELL+/IL7R+). Its
association with immunological regulatory pathways,

including ~ TNF/NF-xB  signaling  pathways
underscored its significance. BisqueRNA
deconvolution revealed no significant survival

variations in CM2-II cell populations.

The CMB3-ISM subtype (immunosuppressive
myeloid, ISM) demonstrated elevated
myeloid-mediated  immune suppression and
tumor-associated macrophage signatures. Pathway
enrichment analysis pointed to NOD-like receptor
signaling pathway, which was reported to aggregate
MDSCs and induce the M2 macrophage polarization,
thereby forming an immunosuppressive
microenvironment [58]. CMB3-ISM was notably
enriched in ipilimumab/nivolumab-resistant patients.
Elevated ISM abundance consistently predicted poor
prognosis in both TCGA and everolimus-treated
cohorts, and correlated with compromised anti-PD-1
response.

The CM4-IE subtype (immune exclusion, IE)
exhibited robust expression signatures related to
cancer-associated fibroblasts (CAFs), EMT,
extracellular matrix remodeling, and angiogenesis.
This fibroblast- and endothelial cell-enriched subtype
showed activation of stromal reprogramming
pathways. While CM4-IE enrichment correlated with
poor prognosis in TCGA cohort, it paradoxically
associated with improved outcomes in the treated
patients (CheckMate). This improved response was
linked to a distinct TME characterized by spatial
co-localization of CM4-IE-high cells with CD8+ T cells
and an enrichment of H3-3B+ fibroblasts, as revealed
by our spatial transcriptomic analysis (Fig. S4G-H).

Inter-tumor Heterogeneity of TIME Subtypes

Following the classification of TIME subtypes,
we extended our investigation to examine the
heterogeneity of TIME across 52 ccRCC patients
(Table S7). Different tumor statuses and pathological
grades exhibited obvious TIME preference, indicating
an association with aetiologies and tumor progression
(Fig. S5E). Analyses of cellular composition
demonstrated a striking divergence in immune
architecture: 30.8% (16/52) of cases exhibited
monotypic TIME dominance (= 65% single-subtype
infiltration), while 692% (36/52) displayed
heterotypic TIME integration (Fig. S5F). This binary
stratification =~ uncovered  significant  clinical
associations: the monotypic subgroup showed a
higher prevalence of advanced-stage disease (Stage
II/1V, P = 0.034) (Fig. S5G).

Our analysis of TIME composition reveals
significant heterogeneity in ccRCC, with monotypic
infiltration being linked to more aggressive disease.
These findings highlight the importance of TIME
patterns in tumor progression.
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Figure 2. Four distinct cellular modules of TIME in ccRCC. (A) UMAP plots showing 75 TIME cell clusters. Cells are grouped into five panels: T cells and NK cells,
myeloid cells, B cells, endothelial cells, and fibroblasts, with color coded by cluster ID. Bn, naive B cell; Bm, memory B cell. (B) The four cellular modules based on Pearson
correlations of cell clusters (shown in Fig. 2A) from samples. Each cellular module corresponds to a TIME subtype, in which the phenotype was designated based on four aspects
shown in Fig. 2C-F. (C) Differential expression of immune-related signatures in four TIME subtypes. The Wilcoxon rank-sum test (two-sided) was applied for significance testing.
*, P <0.05; ¥, P < 0.01; ** P < 0.001. IA, immune activation; Il, innate immunity; ISM, immune suppressive myeloid; IE, immune exclusion. (IA, n = 28 cases, Il, n =7 cases, ISM,
n = 6 cases, |IE, n = |5 cases, n denotes biologically independent patients). (D) Pie charts showing the proportion of cell clusters from each cellular module, with key cell clusters
annotated. (E) Prognostic relevance of four TIME subtypes. Overall survival of cases was stratified by each cellular module proportion. Log-rank test was used for statistical
analysis. (F) Dot heatmap showing enriched Hallmark pathways across four TIME subtypes. P.adjust refers to the Benjamini-Hochberg-adjusted p-value.

Classification of Six Malignant Epithelial States

After investigating TIME heterogeneity, we next
focused on malignant epithelial cell diversity in

ccRCC. We identified malignant epithelial cells in
ccRCC using copy number variant (CNV) score (Fig.
3A). CNV analysis revealed that most of these
epithelial cells were tumor cells, showing high

https://www.ijbs.com



Int. J. Biol. Sci. 2026, Vol. 22

1816

expression of ccRCC marker genes, including NNMT,
CA9, NDUFA4L2, and ANGPTL4 [17] (Fig. 3B). We
then analyzed the transcriptional profiles of these
cells to explore intra-tumor heterogeneity. Using
cNMF, we clustered epithelial cells within each
sample, resulting in 250 distinct subclusters across 114
ccRCC tumors. The heatmaps show the top 30 genes
for each subcluster (Fig. S6-16). To further refine our

References (Cells)

analysis, we grouped these subclusters into six core
meta-programs (MPs, MP1 to MP6; Table S8). Cells
expressing = 70% of program genes were defined as
programmed cells (Fig. 3C-D). We further explored
the most activated pathways in the programmed cells
to define their specific states (Fig. 3E; Fig. S17; Fig.
S18A).
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Figure 3. Six common gene expression programs of epithelial cells in ccRCC tumors. (A) Large-scale CNVs for ccRCC epithelial cells. Red regions stand for gene
amplifications, while blue regions for gene deletions. The inferred CNV pattern of non-malignant epithelial cells is shown in the upper panel. Malignant cells from different patients
are indicated by different color bars on the left of the heatmap. (B) t-SNE plot of all epithelial cells (n = 108,189), color-coded by cell types, CNV score, and expression levels of
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fractions corresponding to 6 MPs. *, P < 0.05; **, P < 0.01; *** P < 0.001.
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Our analysis revealed that MP1-Metabolic was
primarily characterized by gene sets associated with
metabolism (e.g., CYB5A, GPX4, UQCRQ). Pathway
analyses further demonstrated the activation of
metabolic pathways, including oxidative
phosphorylation, fatty acid metabolism, xenobiotic
metabolism, and heme metabolism.

MP2-Angiogenic was enriched in genes
associated with angiogenesis (e.g., PLVAP, VEGFA,
ANGPT2) and exhibited upregulation of key
signaling  pathways such as angiogenesis,
Wnt/B-catenin signaling, TNF-a/NF-xB signaling,
IL-2/STAT5 signaling, and the IL-6/JAK/STAT3
signaling pathway.

MP3-Stress-responsive encapsulated immediate
early genes (e.g.,, EGR1, JUN, FOS) that respond to
cellular stimuli, with a notable upregulation of TNF-a
signaling, UV response, p53, and apoptosis pathways.

MP4-Antigen-presenting was distinguished by
increased expression of MHC-II molecules (e.g., CD3,
PDCD1, HLA family), integral to the initiation of
adaptive antitumor immune responses. The activation
of immunity-related pathways, including allograft
rejection, IFN-y, IFN-a response, and the complement
pathway, potentially indicated reactivity to tumor
neoantigens.

MP5-Cell cycling was characterized by high
expression of genes involved in cell proliferation (e.g.,
MKI67, TOP2A, STMN1), suggesting active tumor cell
proliferation through the activation of E2F targets,
G2M checkpoint, and MYC target pathways.

Finally, MP6-EMT was marked by the
expression of stress keratins (e.g., VIM, COL3Al,
COL1A1, KRT6), which are associated with
keratinocyte hyperproliferation and could potentially
enhance tumorigenesis and tumor growth.

Differentiation Features of Six Malignant
Epithelial States

To elucidate the differentiation characteristics of
six malignant epithelial cell states in ccRCC, we
integrated transcriptomic similarity analysis with
stemness quantification. MP1-Metabolic exhibited
striking molecular similarity with proximal tubular
epithelial cells, preserving most of renal
developmental transcription factors including
HNF4A and PPARA. This molecular continuity
supports the theory that ccRCC originates from
tubular epithelial progenitors [16]. MP2-Angiogenic
demonstrated an unexpected transcriptional overlap
with endothelial cells, particularly in VEGF signaling
components (FLT1, KDR) and extracellular matrix
remodeling enzymes (Fig. 3F).

CytoTRACE analysis revealed a stemness
gradient across malignant cell states (Fig. S18B).

MP1-Metabolic and MP2-Angiogenic exhibited the
lowest stemness indices, indicating terminal
differentiation states with low differentiation
potential. MP6-EMT cells had significantly higher
stemness scores than the other subtypes, indicating
higher differentiation potential (P < 0.001). Notably,
MP6-EMT dominated the tumor ecosystem,
constituting most of total malignant cells across
samples (Fig. S18B right panel). This stemness
hierarchy showed striking clinical relevance:
advanced-stage patients (T3-T4/N1/M1) harbored a
higher proportion of MP6-EMT cells, and MP6-EMT
enrichment conferred a higher risk of CTLA-4/PD-1
treatment failure (P < 0.05) (Fig. S18C). Taken
together, the analysis suggests that the MP6-EMT
tumor cells may have stronger self-renewal ability
and therapeutic resistance potential.

These results revealed that the malignant cell
states of ccRCC showed different differentiation
characteristics. MP1-Metabolic/ MP2-Angiogenic
represented  terminal  differentiation  states,
characterized by high transcriptional concordance
and low stemness. In contrast, MP6-EMT occupies a
more primitive position, marked by stem-like features
and transcriptional divergence. This systematic
characterization delineates malignant plasticity along
differentiation hierarchies and establishes prognostic
correlations. It provides a conceptual framework for
mapping tumor evolutionary trajectories to clinical
outcomes.

Clinical Association of Six Malignant Epithelial
States

Our analysis revealed the clinical relevance of six
heterogeneous malignant cell states (Fig. 3G). Further
analysis revealed that tumor ecosystems exhibited
state dominance patterns, with 68% of patients
showing >50% prevalence of a specific state (Fig. 3G,
Fig. S18D), establishing cell state composition as a
novel stratification biomarker. Thus, we now aim to
explore their stratification capacity for prognosis.
Validation through CIBERSORTx deconvolution
across four independent cohorts (TCGA-KIRC [n =
537], EMTAB-1980 [n = 101], CheckMate [n = 121],
SYSU-ICI+TKI [n = 60]) confirmed its prognostic
stratification capacity (Fig. 3H). Samples were
stratified into high and low groups based on optimal
cutoff points for cell proportions corresponding to six
MPs. Survival analysis revealed significant
associations between elevated proportions of cycling,
stress-responsive, and EMT states and poor
prognosis, while increased proportions of metabolic,
angiogenic, and antigen-presenting states were
associated with a more favorable prognosis. Although
certain cohorts showed limited significance (HRs
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0.9-1.1), consistent trend directions suggested CXCL2/3/8-CXCR1/2 in ecosystem 4). These
biological relevance beyond statistical power  axis-specific signaling architectures underpin the
constraints. functional specialization of the ecosystems.

Our analysis presents a high-resolution atlas of
malignant epithelial diversity in ccRCC, categorizing
tumor cells into six distinct transcriptional MPs. These
MPs not only represent unique functional and
differentiation states but also demonstrate significant
prognostic relevance, offering valuable insights into
tumor heterogeneity and potential therapeutic
strategies.

Detection of Four Tumor Ecosystem Subtypes

Building on our prior characterization of
immune and tumor cell heterogeneity in ccRCC, we
now integrate these components to map the complete
tumor ecosystem. Through hierarchical clustering of
six malignant cell states and four TIME subtypes, we
identified four distinct ecosystems with functional
interplay patterns (Fig. 4A).

To delineate ecosystem-specific communication
patterns, we mapped ligand-receptor networks across

the subtypes. Ecosystem 1 couples
angiogenic/stress-responsive  tumor cells with
CM4-IE  subtypes, revealing vascular niche

co-evolution. Ecosystem 2 features aggressive EMT
tumor cells synergizing with CM3-ISM subtypes,
suggesting myeloid-mediated immune evasion.
Ecosystem 3 combines antigen-presenting tumor cells
with CM1-IA subtypes. In this ecosystem, tumor cells
engage with cytotoxic effectors (NKT_01_GNLY,
CD8_16_CCL3), potentially enabling localized
immune  activation. Ecosystem 4 aligns
metabolic/cycling tumor cells with CM2-II subtypes,
indicating proliferative-metabolic adaptation. Tumor
cells in ecosystem 4 are connected to NK and naive T
cells (CD8_02_IL7R) (Fig. S19). These distinct cellular
interactions are fundamental to the organization of
the ecosystem subtypes.

Transcriptomic profiling revealed
ecosystem-specific chemokine/cytokine networks
that coordinate tumor-TIME crosstalk (Fig. S20A-B).
In ecosystem 1, angiogenic/stress-responsive tumor
cells interacted with endothelial cells through
angiogenesis  signaling  molecules, such as
VEGF-VEGFRs and CADM1-NECTIN3. Notably, in
ecosystem 2, most chemokines tightly bind to DPP4,
an enzyme known to negatively regulate lymphocyte
trafficking, inhibit T cell migration, and impair tumor
immunity by preserving the functional chemokine
CXCL10 [59]. Ecosystems 3 and 4 demonstrated
coordinated chemokine expression patterns between
tumor and TIME cells, suggesting autocrine
reinforcement loops (e.g.,
CXCL16-CXCR6/CXCL2-CXCR2 in ecosystem 3 and

At the clinical level, we constructed four
ecosystem-specific signatures based on the expression
profiles of TIME subtypes, MPs, and specific
ligand-receptor pairs (Table S9). Stratification of the
TCGA, E-MTAB-1980, ICGC, CheckMate, JAVELIN
and SYSUFAH cohorts revealed consistent group
distributions, indicating the robustness of this
categorization (Fig. S20C). Stratification of the TCGA
cohort using ssGSEA identified four distinct
prognostic groups. Kaplan-Meier analysis revealed
significant survival disparities (Fig. 4B), with
ecosystem 2 demonstrating the worst clinical
outcomes (log-rank P < 0.001), while ecosystems 1 and
3 exhibited a favorable prognosis. These findings
collectively establish the clinical relevance of tumor
ecosystem classification. The ecosystem-specific
GSEA analysis revealed distinct enrichment profiles
(Fig. S20D; Fig. S21). The ecosystem 1 signature was
significantly and positively enriched in the
angiogenesis phenotype. The ecosystem 2 signature
showed significant positive enrichment in the
Toll-like receptor and NOD-like receptor signaling
pathways, indicating its suppression. The ecosystem 3
signature was positively enriched in antigen
presentation and adaptive immune response, and the
ecosystem 4 signature exhibited significant positive
enrichment in the reactive oxygen species pathway.
GSEA using our custom immune gene sets
successfully identified distinct biological states,
offering mechanistic insights into their clinical
relevance.

At the spatial transcriptomic level, EMT-high
tumor cells co-localized with M2 macrophages and
CD8+ T cells, with a notable tendency to cluster at the
edge of the tumor tissue in ecosystem 2. As the tumor
stage progresses, the enrichment of EMT-high tumor
cells and M2 macrophages becomes more pronounced
(Fig. 4C; Fig. S22). Mechanistically, NicheNet analysis
identified ecosystem 2-specific upregulation of
EMT-inducing ligands (TGF-p1, IL-18, OSM; Fig.
S23A), indicating stromal-mediated EMT activation
through IL-1p/TGF-B1 signaling. Metascape pathway
enrichment analysis further highlighted the
involvement of pathways related to cell migration,
cytokine response, EMT, and immunosuppression
(Fig. S23B-D). Together, our analyses suggest that
EMT-high tumor cells interact with immune cells,
particularly M2 macrophages, through cytokine
signaling, which contributes to tumor progression
and helps explain the poor survival outcomes
observed in ecosystem 2 patients.
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Figure 4. Four ecosystem subtypes in ccRCC and construction of 126 machine learning-based models. (A) Heatmap showing pairwise correlations of four cellular
modules and six malignant meta-programs. Clustering identified four ecosystems across 43 tumors. (B) Kaplan-Meier survival curves showing overall survival of each TCGA-KIRC
patient assigned to a single ecosystem. The table below shows the results of the pairwise tests between any two ecosystems. BH, Benjamini-Hochberg adjustment. (C) Spatial
transcriptomic analysis shows that EMT-high tumor cells co-localize with M2 macrophages and tend to be located at the edge of tumor tissue. As the tumor stage progresses, the
enrichment of EMT-high tumor cells and M2 macrophages becomes more pronounced. (D) Heatmap showing a total of 126 prediction models annotated with C-index.
Histogram on the right shows the average C-index across five validating cohorts and the model size. Model size refers to the number of genes included in the models. The optimal
model is marked in red. (E) Kaplan-Meier survival curves of overall survival according to the ISM-EMT-RS in TCGA-KIRC (n = 371), E-MTAB-1980 (n = 530), CheckMate cohorts
(n = 311), and progression-free survival in JAVELIN-Renal-101 (n = 726), SYSU cohort (n = 60). Log-rank test was used. (F) I-, 3-, and 5-year time-dependent C-index of
ISM-EMT-RS across all datasets. (G) Coefficients of 15 mRNAs in the optimal model.
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In summary, our analysis characterizes four
distinct ccRCC tumor ecosystems, each defined by
specific interactions between tumor cells and the
TIME. These ecosystems exhibit unique activation
patterns of signaling pathways that influence tumor
behavior and immune dynamics. Notably, ecosystem
2 is associated with poor prognosis, underscoring its
role in immune evasion.

Construction and Validation of 126 Machine
Learning Models

Our previous findings highlight the clinical
relevance of tumor ecosystem classification as a
predictive tool for patient stratification and potential
therapeutic targeting. Given that samples from
ecosystem 2 exhibited the worst survival outcomes,
we established ISM-EMT-Sig using machine-learning
framework described in method sections. We tested
126 different prediction models on the TCGA-KIRC
dataset, calculating the C-index for each model across
various validation datasets (Fig. 4D). The HRs and
their confidence intervals for 126 prognostic models
across training set, internal validation set, and four
distinct external validation sets were presented in the
forest plot (Fig. S24A). The optimal model was a
combination of Kang’s Model and Elastic Net (Enet)
(a = 0.8) with 15 genes, yielding the highest average
C-index (0.647), which showed a substantial C-index
across all validation datasets. Ten-fold
cross-validation was used to assess the robustness and
generalizability of the optimal model (Fig. S24B-C).
The optimal model demonstrated robust predictive
performance, as evidenced by a mean coefficient of
determination (R?) of 0.847.

Risk stratification wusing these weighted
transcripts (Table S10) consistently discriminated
high-risk patients with worse OS/PFS across five
cohorts (log-rank P < 0.05), including ICB-treated
populations (CheckMate, JAVALIN_Renal_101, SYSU
cohort) (Fig. 4E-F). Multivariate Cox regression
demonstrated that ISM-EMT risk score (ISM-EMT-RS)
remained statistically significant (all P < 0.05) after
adjusting for available clinical factors, such as age;
gender; disease stage; PD-L1 status (Fig. S25). This
confirmed the ISM-EMT-RS as an independent OS
predictor (TCGA-KIRC: HR = 2.06, 95% CI 1.60-2.65, P
< 0.001; E-MTAB-1980: HR = 2.08, 95% CI 1.08-3.98, P
< 0.001; CheckMate: HR = 1.13, 95% CI 0.96-1.34, P =
0.137). For PFS, the ISM-EMT-RS showed some
predictive value but did not reach statistical
significance.

Evaluation of the Optimal Machine Learning
Model

Receiver operating characteristic (ROC) analysis

measured the discrimination of ISM-EMT-RS, with 1-,
3-, and 5-year AUCs of 0.815, 0.814, and 0.805 in
TCGA-KIRC; 0.813, 0.896, and 0.818 in E-MTAB-1980;
0.573, 0.549, and 0.520 in CheckMate, respectively.
1-year AUCs of SYSU cohort and JAVELIN cohort are
0.607 and 0.555, respectively (Fig. 4G). Furthermore,
we compared the performance of ISM-EMT-RS with
other clinical variables in predicting prognosis. As
depicted in Fig. S26, ISM-EMT-RS exhibited distinctly
superior accuracy compared to other variables,
including age, gender, pathological grade, T, N, M,
and AJCC stage (except for the comparison between
ISM-EMT-RS  and AJCC stage in  the
TCGA-KIRC-training and TCGA-KIRC-total cohort).
These findings collectively suggest that the
ISM-EMT-RS has stable and robust prognostic
performance in multiple independent cohorts. AJCC
stage is a commonly used prognostic tool for the
clinical management of ccRCC, and multivariate Cox
regression analysis demonstrated that AJCC stage
was statistically significant across multiple cohorts.
Thus, combining the ISM-EMT-RS with AJCC stage
may further improve the predictive ability of our
model.

In summary, we established the ISM-EMT-RS as
a robust, independent prognostic tool for ccRCC, with
superior predictive power across multiple cohorts.
The optimal machine learning model, combining
Kang’s Model with ENet, provides reliable risk
stratification for predicting overall survival.

Expressive Validation of Prognostic
Biomarkers at mRNA and Protein Resolution

We selected six genes from ISM-EMT-Sig for
downstream experimental validation. Specifically, we
chose two genes with the highest positive coefficients
and two with the highest negative coefficients, as
these are likely to have the most significant impact on
our model. Additionally, we included two genes with
median coefficients to represent a range of moderate
effects. qPCR revealed significant upregulation of
FKBP10 and IQGAP3, and downregulation of
DNASE1L3, SHROOMS3, and DPEP1 in ccRCC tumors
(P < 0.05) (Fig. 5A). Then the gene with the most
significant differential expression within each of the
three groups was selected for further protein
expression analysis. WB results showed that FKBP10
was upregulated, while DNASE1L3 and DPEP1 were
downregulated in ccRCC tissues (Fig. 5B).

IHC staining showed distinct expression
patterns of DNASE1L3, DPEP1, and FKBP10 across
normal, early, and advanced stages. DNASE1L3 and
DPEP1 decreased progressively, while FKBP10 was
elevated mainly in advanced stages (Fig. 5C).
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Figure 5. Expression and functional analysis of FKBP10, DNASEIL3, and DPEP1 in ccRCC. (A) mRNA expression levels of six candidate genes (FKBP10, IQGAP3,
DNASEIL3, SCD5, SHROOMS3, DPEP1) in ccRCC tumors versus paired normal adjacent tissues (n = 20 matched pairs). Data were quantified by qRT-PCR and analyzed using
two-tailed paired Student’s t-tests. (B) Representative western blot analyses of FKBP10, DNASEIL3 and DPEP1 protein expression in tumor/normal tissue pairs (n = 12 matched
pairs). (C) Immunohistochemical staining of FKBP10, DNASEIL3 and DPEP1 across ccRCC clinical stages. (D, E) Colony formation (D) and CCK-8 proliferation assays (E) in
786-O and 769-P cells following FKBP10 knockdown (siFKBP10) or overexpression (OE) of DNASEIL3/DPEP1 (n = 3 independent experiments, mean * SD). (F) Transwell
migration (upper chamber without Matrigel) and invasion (with Matrigel coating) assays under indicated treatments (n = 3 independent experiments). (G) Subcutaneous xenograft
growth curves (left) and final tumor weights (right) in mice (n = 5 per group) injected with: 1) Vector control, 2) FKBP10-knockdown, 3) DNASE1L3-overexpressing, or 4)

DPEP1-overexpressing 786-O cells. Data were analyzed by mixed-effects model (growth curves) and two-tailed unpaired Student’s t-tests (tumor weights). Data are presented
as mean * SD. *, P < 0.05; **, P < 0.01; ¥ P < 0.001.
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Functional Validation of
FKBP10/DNASEIL3/DPEPI

To better understand the roles of FKBP10,
DNASE1L3, and DPEP1 in RCC progression, we
conducted a series of functional assays. Colony
formation and CCKS8 assays demonstrated that
silencing FKBP10 and overexpressing
DNASE1L3/DPEP1  significantly suppressed the
proliferation of 786-O and 769-P cells (all P < 0.05)
(Fig. 5D-E). Quantitative Transwell analysis
demonstrated FKBP10 silencing reduced invasion by
54% (P < 0.05) and migration by 58% (P < 0.05), while
DNASE1L3/DPEP1  overexpression  attenuated
invasion by 62%/39% and migration by 70%/46%
compared to controls (P < 0.05) (Fig. 5F).

In wvivo validation through subcutaneous
xenograft models revealed phenotype concordance:
DNASE1L3/DPEP1-overexpressing tumors showed a
49%/76% volume reduction (P < 0.001), while
FKBP10-silenced models exhibited an 81% growth
inhibition (P < 0.001) at endpoint compared to
controls (Fig. 5G). These findings support FKBP10 as
a metastasis driver and DNASE1L3/DPEP1 as tumor
suppressors in the pathogenesis of ccRCC.

FKBP10 as a Biomarker in Immunotherapy

Cox regression analysis across TCGA-KIRC,
GSE167573, E-MTAB-1980, and ICGC-EU datasets
confirmed FKBP10 as a risk factor for ccRCC, while
DPEP1 and DNASEI1L3 exhibited protective roles.
GSEA of hallmark pathways identified EMT, KRAS
signaling, and glycolysis as top enriched pathways in
FKBP10-high tumors (Fig. 527).

Further survival analysis across multiple
immunotherapeutic  cohorts indicated FKBP10
expression as a pan-immunotherapy biomarker.
Compared to DPEP1 and DNASE1L3, FKBP10
expression consistently distinguished
immunotherapeutic efficacy across several cohorts,
including CheckMate cohort treated with anti-PD-1
therapy (log-rank, OS: P = 0.014; PFS: P = 0.0062),
CheckMate + JAVELIN cohort (log-rank, P < 0.0001);
Kim cohort 2019 treated with anti-PD-1/PD-L1
therapy (log-rank, P = 0.05), IMvigor210 cohort 2018
treated with anti-PD-L1 therapy (log-rank, P =
0.0017), VanAllen cohort 2015 treated with
anti-CTLA-4 therapy (log-rank, P = 0.00047), and
SYSUFAH cohort treated with anti-PD-1 (log-rank, P
=(.024) (Fig. 6A, Fig. S28).

Multivariable Cox regression analysis revealed
that high FKBP10 expression is an independent risk
factor for ccRCC patients across multiple cohorts,
including TCGA, E-MTAB-1980, CheckMate,
JAVELIN, and SYSUFAH (Fig. S29A). Subgroup

analysis in our multicenter SYSUFAH cohort, which
received different immunotherapy regimens, further
supported this finding (Fig. S29B). Specifically,
FKBP10 was identified as a significant risk factor in
the Axitinib plus Toripalimab treatment group (n =
49). In contrast, no significant association (P > 0.05)
was observed in the Lenvatinib plus Pembrolizumab
(n =4) or Axitinib plus Pembrolizumab (n = 8) groups,
likely due to the limited sample sizes.

The consistent predictive power of FKBP10
across these cohorts suggests its potential as a
pan-immunotherapy biomarker. This prompted
further investigation into the immunomodulatory role
of FKBP10.

FKBP10 Promotes M2 Polarization and EMT
in RCC

To investigate the mechanistic role of FKBP10 in
TME reprograming within ccRCC, we performed
integrative scRNA-seq analyses across three
independent validation cohorts (n = 429,854 cells).
Notably, FKBP10_High tumors exhibited a significant
depletion of total macrophage populations (P < 0.001,
x? test; Fig. §29C), accompanied by distinct TIME
remodeling. Specifically, we observed marked
reductions in anti-tumorigenic TIME subtypes and
increases in the immunosuppressive CM3-ISM
subtype in FKBP10_High tumors (Fig. S29D-E).
Additionally, FKBP10 showed a significant positive
correlation with the M2 polarization-promoting
cytokine CXCLS (Fig. S29F).

Pseudotime analysis revealed bifurcating
macrophage differentiation trajectories, identifying
three distinct cellular states (States 0-2). State 1
macrophages showed enrichment for M1 polarization
markers (IRF5, IL12B) and pro-inflammatory TNF-a
signaling pathways. State 2 cells were characterized
by M2-associated markers (CD206, ARGI).
FKBP10_High tumors exhibited a preferential
accumulation of M2-polarized macrophages (P <
0.001; Fig. 6B).

Complementary heatmap analysis of
pseudotime-dependent gene expression revealed four
distinct transcriptional modules (Modules I-IV) along
the macrophage differentiation continuum (Fig. 6C).
Through kernel density estimation of M0/M1/M2
phenotypic distributions, we established three
developmental phases: Phase 1 (early differentiation)
predominated by MO macrophages enriched in
immune surveillance pathways (innate immune

response: p = 4.42x106; macrophage
chemotaxis/migration: P = 1.42x10%); Phase 2
(intermediate) dominated by M2-polarized cells

showing marked activation of immunosuppressive
signaling (IL-4/IL-13: P = 2.88x1016, IL-10: P =
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3.93x102; 1L-17: P = 6.77x107); and Phase 3 increasing from Phase 1 to Phase 3 (Fig. 6D).
(terminal) enriched for Mil-like macrophages Conversely, FKBP10_High macrophages exhibited
upregulating pro-inflammatory mediators (IFN-y  significant suppression of M1l-associated effectors
response: P = 1.43x107% cytokine activity: P = (CD86, CCL5, CXCL9, and CXCL12), indicating
1.88x10%).  Pseudotime analysis demonstrated = FKBP10's role in bidirectional regulation of
progressive activation of canonical M2 markers in ~ macrophage polarization.
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Figure 6. FKBP10 shapes an immunosuppressive microenvironment and synergizes with anti-PD-1 therapy. (A) Kaplan-Meier analysis of immunotherapy
response (anti-PD-1: CheckMate cohort, n = 181; anti-PD-LI: IMvigor210, n = 348; anti-PD-1/PD-LI: Kim cohort, n = 27). Log-rank P values shown. (B) Monocle2-based
pseudotime trajectories (n = 7,476 macrophages from 71 ccRCC samples) include: (Top) Phenotype distribution (M0/M1/M2) with cell density estimation. Stacked bars show
phenotype proportions in FKBP10-high versus FKBP10-low groups (x? test, ***, P < 0.001). (Bottom left) Two distinct differentiation states (State 1/2) identified by DDRTree
dimensional reduction. Stacked bars show state proportions across groups (x? test, ***, P < 0.001). (Bottom right) State-specific pathway activities calculated by AddModuleScore.
Color scale: z-scored enrichment scores. (C) Heatmap of 1,000 differentially expressed genes (|log2FC| > 1, FDR < 0.05 by DESeq2) across pseudotime continuum (columns:
7,476 cells from 62 patients). Rows show z-score normalized expression. (Top) cell density estimation of MO/M1/M2 macrophage distribution along pseudotime. Dashed lines
indicate polarization checkpoints. (Right) Top enriched pathways per gene module (FDR < 0.01). (D) Dynamic expression patterns of macrophage polarization markers along
pseudotime. (E-F) Representative IHC staining (10%, 50x) of FKBP10 across AJCC stages (n = 5 per stage). Co-staining of macrophage markers CD206 (M2) and CD86 (M1) with
EMT markers (N-cadherin, vimentin, and E-cadherin). (G) In vivo therapeutic efficacy in Renca-bearing Balb/c mice (n = 5 per group): Combination therapy (siFKBP10 + anti-PD-1)
significantly reduced tumor weight and volume (***P < 0.001, two-way ANOVA) compared to monotherapies. siNC, scrambled control; i.t., intratumoral; i.p., intraperitoneal. *,
P < 0.05; **, P < 0.01; *** P < 0.001. All data represent mean * SD from independent experiments unless specified. Statistical analyses performed using Benjamini-Hochberg
correction for omics data.
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We further analyzed immune cell infiltration,
stratified by FKBP10 expression levels, in the
E-MTAB-1980, CheckMate, TCGA-KIRC, and
JAVELIN cohorts using multiple algorithms (Fig.
§30-31). The results showed that high FKBP10
expression was associated with a significant decrease
in T cells. In contrast, there was an increase in
macrophages, particularly M2 macrophages, and
CAFs. ESTIMATE analysis revealed that the high
FKBP10 group exhibited a significantly decreased
immune score, and an increased stromal score. In

summary, bioinformatic analysis suggests that
FKBP10 contributes to an immunosuppressive
microenvironment through macrophage

reprogramming and matrix remodeling.

Consistent with the pro-metastatic role of EMT,
IHC profiling revealed significant co-upregulation of
mesenchymal markers N-cadherin (2.51-fold increase,
P < 0.001) and Vimentin (4.69-fold, P < 0.001) in
FKBP10_High tumors, concomitant with a collapse in
epithelial marker (E-cadherin: 0.22-fold decrease, P <
0.001; Fig. 6E). This reciprocal regulation pattern
supports FKBP10 as a potent EMT inducer in ccRCC.
Multispectral immunofluorescence analysis
quantitatively demonstrated the spatial enrichment of
CD206+ M2 macrophages in FKBP10_High tumor
stroma (mean intensity: 148.92 vs 33.69 in Low, P <
0.001; Fig. 6F). Furthermore, CD206+ clusters
exhibited direct spatial adjacency to EMT+ tumor cells
in the previous spatial transcriptomics analysis,
suggesting paracrine crosstalk between
FKBP10-reprogrammed M2 macrophages and
progressing tumor cells. Our findings highlight the
role of FKBP10 in creating a pro-metastatic niche
through macrophage polarization and EMT.

Combination Therapy of siFKBP10 and
Anti-PD1 Shows Synergistic Effects in Cancer
Treatment

Based on our findings that FKBP10 promotes M2
macrophage polarization and EMT in RCC, we next
investigated whether targeting FKBP10 could enhance
the efficacy of ICB. To this end, we established a
syngeneic Renca renal carcinoma model in BALB/c
mice (n = 5 per group) to assess the therapeutic
potential of FKBP10 inhibition in combination with
anti-PD-1 therapy (Fig. 6G). On days 9, 11, and 13, the
mice received intra-tumoral injections of VNP
(siNC/siFKBP10). On days 14 and 15, they were
administered intraperitoneal injections of anti-PD-1.
Tumor weight analysis revealed a marked reduction
in tumor burden in the VNPsiFKBP10 + anti-PD-1
group compared to the control groups (VNPsiNC +
IgG, VNPsiFKBP10 + IgG, and VNPsiNC + anti-PD-1).
Consistently, longitudinal monitoring of tumor

volume demonstrated significantly slower tumor
growth in the combination group, indicating
enhanced antitumor efficacy. Among all treatment
arms, the VNPsiFKBP10 + anti-PD-1 group exhibited
the most pronounced tumor suppression, suggesting
a synergistic interaction between FKBP10 silencing
and PD-1 blockade. Collectively, these results
demonstrate that FKBP10 inhibition sensitizes tumors
to ICB, supporting the therapeutic potential of
combining siFKBP10 with anti-PD-1 treatment to
improve clinical outcomes in renal cell carcinoma.

CXCLS8 is the Dominant FKBP10-Regulated
Chemokine

To explore the paracrine crosstalk between
macrophages and tumor cells, we performed cytokine
profiling in serum-starved RCC cells. Quantitative
densitometry revealed significant upregulation of
IL-1ra, IL16, CCL5 and CXCL8 compared to vehicle
controls (P < 0.001) (Fig. 7A). Consistent with protein
findings, qPCR demonstrated parallel mRNA
induction (IL16, CCL5, CXCLS; all P < 0.001; Fig. 7B).

Baseline characterization of RCC cells revealed
that 786-O cells exhibited low endogenous FKBP10
expression levels versus OS-RC-2 cells. Notably,
CXCL8 secretion in OS-RC-2 conditioned media
surpassed 786-O levels (P < 0.001), whereas IL-16 and
CCL5 showed no inter-cellline disparity (P > 0.05)
(Fig. 7C). These findings established CXCL8 as the
dominant FKBP10-regulated chemokine in RCC.

FKBP10 Modulates Tumor Growth and
Immune Microenvironment Through
CXCL8-CXCRI1/2 Axis

Given that CXCLS8 could induce M2 polarization
[60], we established a macrophage-tumor co-culture
system using Transwell assays to explore the role of
CXCL8 in M2 polarization. Supplementation with
CXCLS significantly enhanced macrophage-mediated
invasion, with invasion indices increasing 2-fold in
OSRC2 cells and 3-fold in 786-O cells compared to
baseline (Fig. 7D). This suggests that CXCLS8 is a key
factor in FKBP10-driven cancer progression.

In a subcutaneous xenograft model,
overexpression of FKBP10 (0eFKBP10 + IgQG)
significantly promoted tumor growth, as indicated by
larger tumor volumes and weights compared to the
control group (Vector + IgG) (Fig. 7E-G). Flow
cytometry of tumor tissues revealed that FKBP10
overexpression shifted the immune
microenvironment toward immunosuppression, with
reduced M1 macrophages and increased M2
macrophages and MDSCs. Importantly, this effect
was dependent on the CXCL8-CXCR1/2 signaling
pathway. Inhibition of this pathway using
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anti-CXCL8 neutralizing antibodies or CXCR1/2
inhibitors (Reparixin) significantly slowed tumor
growth and reversed the immunosuppressive cell
profile in the 0eFKBP10 group (Fig. 7H).

Conversely, knockdown of FKBP10
(shFKBP10#1 and  shFKBP10#2) significantly
suppressed tumor growth compared to controls
(shNC) (Fig. 7I-K). FKBP10 depletion resulted in a
more immunostimulatory microenvironment, with
increased M1 macrophages and decreased M2
macrophages and MDSCs. Importantly, exogenous
CXCLS8 administration reversed the effects of FKBP10
knockdown, restoring tumor growth and promoting
an immunosuppressive microenvironment (Fig. 7L).
This underscores CXCL8 as a critical mediator of
FKBP10’s function in vivo.

FKBP10 Upregulates CXCL8 Through
MEK/ERK Signaling

To identify the signaling pathway responsible
for FKBP10-driven CXCL8 induction, we conducted
pharmacological inhibition experiments in 786-O
cells. After 24 hours of serum starvation, the cells
were pretreated with clinically relevant inhibitors
targeting MEK (binimetinib, 5 pM), JNK (SP600125, 10
M), and PI3K (LY294002, 20 uM) before FKBP10
stimulation. FKBP10 treatment significantly increased
CXCL8 mRNA expression. Notably, binimetinib, a
MEK inhibitor, strongly reduced FKBP10-induced
CXCLS8 expression, while the JNK and PI3K inhibitors
had no effect (Fig. 8A-B). Further experiments
showed that FKBP10 knockdown reduced
phospho-MEK, phospho-ERK, and CXCLS8 expression
without affecting total MEK/ERK levels (Fig. 8C).
Conversely, FKBP10 overexpression increased
phospho-MEK,  phospho-ERK, and  CXCLS8
expression, again without altering total MEK/ERK
levels (Fig. 8D). These findings confirm that FKBP10
upregulates CXCL8 expression through the
MEK/ERK signaling pathway in RCC cells.

ELF3 Drives FKBP10-Mediated
Transcriptional Activation of CXCL8

Integrative analysis of ENCODE ChIP-seq
datasets identified 135 transcription factors (TFs)
using MACS2 peak calling (q < 0.01). These TFs
demonstrate coordinated chromatin binding at the
CXCL8 locus, including active promoter regions
(H3K4me3+/H3K27ac+) and distal enhancers
(H3K4mel+) (Fig. S32A). Intersectional analysis with
TCGA-KIRC  differential  expression  profiles
(|1log2FC| > 1, FDR < 0.05) highlighted 18 clinically
relevant TFs (Fig. S32B). Among these, only ELF3,
ZNF331, and ATF3 showed significant co-expression
with CXCL8 (P < 0.001) (Fig. $32C). Computational

deconvolution using JASPAR confirmed that ELF3
binds to the CXCLS8 promoter (-2,000 bp to +100 bp
around TSS) with highly conserved motifs (relative
score > 0.85/1.0) (Fig. S32D).

Western blot showed that FKBP10 knockdown
reduced both ELF3 and CXCLS8 protein levels (Fig.
8E). Rescue experiments showed that FKBP10
overexpression  significantly increased CXCLS8
expression. However, this effect was substantially
diminished when ELF3 was also knocked down (Fig.
8F), indicating that FKBP10’s induction of CXCLS8 is
ELF3-dependent. Conversely, FKBP10 knockdown
led to a marked decrease in CXCLS8 levels, but this
reduction was reversed by ELF3 overexpression (Fig.
8G). Together, these results demonstrate that ELF3 is
crucial for FKBP10-mediated CXCLS8 expression.
RNA-seq profiling (siFKBP10 vs. siNC, n = 3
biological replicates) confirmed the downregulation
of the ELF3-CXCLS axis, EMT master regulators, and
M2 polarization effectors (Fig. 8H) ChIP-seq density
and heatmaps showing FKBP10-associated chromatin

occupancy around transcription start sites (+3 kb) in

WT and FKBP10-knockdown (shFKBP10) cells.
Compared to WT, FKBP10 depletion markedly
reduced enrichment at TSS regions, indicating a loss
of FKBP10-dependent promoter binding (Fig. S8I).
Peak plots revealed a reduction in ELF3 binding to the
CXCLS8 promoter region in shFKBP10 cells compared
to WT cells (Fig. 8]). Taken as a whole, FKBP10
activates the MEK/ERK/ELF3 signaling cascade to
transcriptionally upregulate CXCLS8, which is secreted
into the TME. This paracrine CXCL8 drives M2
macrophage polarization, thereby fostering an
immunosuppressive niche that accelerates tumor
immune evasion and metastatic outgrowth (Fig. 8K).

Synergistic Antitumor Effects of siELF3 and
Anti-PD-1 Therapy

We investigated whether targeting ELF3 could
enhance the effectiveness of ICB therapy. Using a
syngeneic Renca renal carcinoma model in BALB/c
mice (n = 5 per group), we tested the combination of
ELF3 inhibition with anti-PD-1 therapy (Fig. 8L).

The combination of VNPsiELF3 and anti-PD-1
led to a significant reduction in tumor weight
compared to the control groups (VNPsiNC + IgG,
VNPsiELF3 + IgG, and VNPsiNC + anti-PD-1) (Fig.
8M). Tumor volume measurements over time showed
slower tumor growth in the combination therapy
group (Fig. 8N). The VNPsiELF3 + anti-PD-1 group
showed the most significant tumor suppression.
These results support the potential of combining
siELF3 with anti-PD-1 therapy as a promising strategy
for improving treatment outcomes in RCC.
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Figure 7. FKBP10 modulates tumor growth and immune microenvironment through the CXCL8 signaling axis. (A, B) Conditioned media from serum-starved
786-0 cells treated with | pg/ml recombinant FKBP10 for 24 hours were analyzed using a human cytokine array (A). Corresponding mRNA levels of IL16, CCL5, and CXCL8
were quantified by QRT-PCR (B). (C) Western blot revealed higher endogenous FKBP10 expression in OS-RC-2 compared to 786-O cells (top). ELISA quantification showed
significantly elevated CXCL8 (***, P < 0.001), but not IL16 or CCLS5, in OS-RC-2 conditioned media (bottom). CM: conditioned media. (D) Transwell invasion assays
demonstrating CXCL8-dependent macrophage-mediated invasion. Microscopic images and cumulative number of invaded RCC cells on the bottom surfaces of filters. (E-G)
Representative images (E), tumor volume (F) and tumor weight (G) of excised tumors at the endpoint. Mice (n = 5 per group) were subcutaneously injected with cancer cells
stably transduced with empty vector (Vector) or FKBP10-overexpressing vector (oeFKBP10). Treatments included isotype control IgG, anti-CXCL8 neutralizing antibodies, or
the CXCR1/2 inhibitor Reparixin. Data are presented as mean * SD. Statistical significance was determined by two-way ANOVA for tumor volume and one-way ANOVA with
Tukey’s test for tumor weight. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (H) Flow cytometry analysis of tumor-infiltrating immune cells. Bar graphs show the proportions of M|
macrophages (CD86+), M2 macrophages (CD206+), and MDSCs (CD11b+Gr-1+). Data are mean + SD of n = 5 biological replicates. *, P < 0.05; **, P < 0.01; ***, P < 0.001
(one-way ANOVA with Tukey'’s test). (I-K) Representative images (I), tumor growth curves (J) and tumor weight (K) of excised tumors at the endpoint. Mice (n = 5 per group)
were subcutaneously injected with cancer cells stably transduced with a non-targeting control shRNA (shNC) or one of two distinct FKBP10-targeting shRNAs (shFKBP10#1,
shFKBP10#2). Mice bearing shFKBP10 tumors received intratumoral injections of recombinant CXCL8. Data are mean + SD. Statistical analysis as in E-G. (L) Flow cytometry
analysis of tumor-infiltrating immune cells. Bar graphs show the proportions of M1 macrophages (CD86+), M2 macrophages (CD206+), and MDSCs (CD11b+Gr-1+). Data are
mean * SD. Statistical analysis as in H.
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Figure 8. FKBP10 upregulates CXCL8 expression via activation of the MEK/ERK/ELF3 signaling axis. (A, B) Pretreatment of 786-O cells with Binimetinib (ERK
inhibitor) prior to FKBP10 treatment significantly attenuated CXCL8 mRNA (A) and secreted protein (B) levels, as determined by qRT-PCR and ELISA, respectively. SP600125,
a specific JNK inhibitor; LY294002, a specific PI-3K inhibitor. (C) Representative western blots showing MEK/ERK phosphorylation status in FKBP10-knockdown (siFKBP10),
wild-type (WT), and scrambled control (siNC) 786-O cells. p-MEK, phosphorylated MEK; p-ERK, phosphorylated ERK. (D) Representative western blots showing MEK/ERK
phosphorylation status in FKBP10-overexpression (oeFKBP10), wild-type (WT), and scrambled control (Vector) 786-O cells. (E) Western blot validation of ELF3 and CXCL8
downregulation in FKBP10-knockdown cells. (F) Western blot analysis showing that the downregulation of CXCL8 induced by FKBP10 knockdown (shFKBP10) was rescued by
ELF3 overexpression (oeELF3). (G) The upregulation of CXCL8 induced by FKBP10 overexpression (oeFKBP10) was attenuated by ELF3 knockdown (shELF3). (H) Volcano plot
of RNA-seq data (siFKBP10 versus siNC, n = 3) highlighting ELF3, CXCL8 and EMT/M2 polarization genes (|log2FC| > 1.5, FDR < 0.01). (I) Heatmap depicting the normalized
ChlP-seq signal intensity of ELF3 binding peaks in regions centered on summits from shNC and shFKBP10 cells. The color scale indicates ChlP-seq enrichment, with blue
representing high intensity and red representing low intensity. The experiment was performed with two biological replicates per condition. (J) Peak plots showed a reduction in
ELF3 binding to the CXCL8 promoter region in shFKBP10 cells compared to WT cells. (K) Proposed mechanism of FKBP10-MEK-ERK-ELF3-CXCL8-M2 polarization axis in TME
remodeling. (L-N) In vivo therapeutic efficacy in Renca-bearing Balb/c mice (n = 5 per group): Combination therapy (siELF3 + anti-PD-1) significantly reduced tumor volume (M)
and weight (N) compared to monotherapies. siNC, non-targeting control. Data are presented as mean + SD. Statistical significance for tumor volume was determined by two-way
ANOVA,; other comparisons were analyzed by one-way ANOVA. *, P < 0.05; **, P < 0.01; *** P < 0.001.
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Discussion

This study systematically identified four TIME
subtypes and six tumor cell states with distinct
prognostic values in ¢ccRCC by analyzing over one
million single cells across ten cohorts. Additionally,
through cell communication analysis, we delineated
four distinct tumor ecosystems. We constructed a
robust 126-gene prognostic model based on the
ecosystem  with  the poorest  prognosis.
Mechanistically, we identified FKBP10 as a core
pathogenic gene and revealed a novel mechanism by
which it upregulates CXCL8 secretion through the
MEK/ERK/ELF3 signaling axis, thereby remodeling
the immunosuppressive microenvironment and
promoting tumor progression.

The present study has provided several
significant findings. First, our integrative analysis
delineates four archetypes of TIME heterogeneity in
ccRCC, revealing clinically associated biological
features. The correction of batch effects and the
inclusion of abundant non-malignant cell populations
allowed us to uncover these previously unreported
features [13, 14, 16-19, 21, 33]. The CM1-IA subtype
displayed an immunologically active phenotype
linked to improved survival and a favorable response
to the mTOR inhibitor everolimus. However, its
limited predictive value for PD-1 blockade
(nivolumab) outcomes likely reflects fundamental
differences in therapeutic mechanisms. Everolimus
primarily targets tumor-intrinsic pathways by
inhibiting angiogenesis [61]. In contrast, nivolumab’s
efficacy depends on the dynamic equilibrium within
the TIME. Its clinical effectiveness is concurrently
modulated by pre-existing effector T cells, T cell
exhaustion [62], immunosuppressive cell infiltration,
antigen presentation capacity, etc. [63]. These
coexisting regulatory networks may collectively
diminish the prognostic significance of CMI-IA
signatures in anti-PD-1 therapy. Contrastingly, the
CM2-1I subtype exhibited prominent innate immune
activity. Since innate immune responses primarily
modulate adaptive immunity rather than exert direct
cytotoxic effects [64, 65], this may explain its weak
association with prognosis and immunotherapy
response in ccRCC. The CM3-ISM subtype,
characterized by dense myeloid infiltration, was
associated with poor prognosis and resistance to both
mTOR inhibitors and PD-1 blockade, consistent with
previous studies [8, 9]. Notably, our comprehensive
analysis revealed mechanisms of tumor progression
and treatment resistance. In CM3-ISM, most
macrophages express high levels of macrophage
polarization regulators (e.g., APOC1, SELENOP) that
have been shown to promote M2 polarization of

macrophages and play a tumor-promoting role by
regulating cancer cell proliferation, metastasis, and
angiogenesis [66-68]. Other macrophages
overexpressing CCL3/CCL4 have been reported to
augment tumor  metastasis by  promoting
neovascularization, recruiting Tregs, and recruiting
pro-tumorigenic macrophages via CCL3/CCL4-CCR5
axis [69, 70]. The CM4-IE subtype, composed
primarily of fibroblasts and endothelial cells,
influences angiogenesis, cell adhesion, and migration.
These cells have strong immunomodulatory
capacities that contribute to immune evasion [62, 71].
The CM4-IE signature and its associated
improvement in immunotherapy response may be
attributed to a spatially coordinated TME, where ICB
has the potential to reverse T cell dysfunction by
modulating  cell-cell  interactions [17, 72].
Consequently, the CM4-IE signature may represent a
contextual biomarker indicative of a TME susceptible
to immune reactivation. Overall, this work provides
the first comprehensive delineation of TIME
heterogeneity in ccRCC, paralleling similar immune
landscapes observed in liver cancer [39]. This work
advances precision medicine and immuno-oncology
by helping identify patients who are responsive to
immunotherapy. It provides targets and pathways for
developing combination therapies to overcome future
treatment resistance.

Second, we deciphered the intra-tumor
expression heterogeneity of malignant epithelial cells
and categorized ccRCC tumor cells into six states. A
previous study has reported six conserved MPs that
distinguish ccRCC tumor cell functions, including
stress response, proximal tubule, EMT, cell death,
MHC-II, and cell cycle [32]. However, it only included
ten samples, which may not adequately represent the
full spectrum of ccRCC heterogeneity. These MPs
align with those found in our analysis, except for
proximal tubule, cell death, and MHC-II. The
proximal tubule meta-program shared transcriptional
features with our metabolic meta-program, while the
MHC-II meta-program was similar to our
antigen-presenting meta-program. Our analysis,
which includes a larger sample size and diverse
tumor cell populations, revealed a previously
unreported angiogenic state. Patients in the
angiogenic state demonstrated better responses to
VEGF-targeting TKIs, revealing pathway-specific
therapeutic efficacy [73]. Classifying ccRCC tumor
cells in the angiogenic state could be invaluable for
identifying patients who are sensitive to TKI therapy.
EMT tumor cells in ccRCC tended to localize to the
tumor-normal interface, which is the leading and
migratory edge of a tumor, potentially enabling the
collective migration and invasion of tumor cells. High
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EMT scores in tumor cells correlate with increased
metastatic potential, assisting in the identification of
patients at higher risk for advanced disease. Given
that immunotherapy is often reserved for
advanced-stage ccRCGC, this finding indirectly helps in
selecting  patients who may benefit from
immunotherapeutic approaches. As for tumor cells in
the metabolic and antigen-presenting state, our
analysis indicated that these cells retained PT cell
characteristics and antigen-presenting functions,
suggesting a lower grade of malignancy and a more
favorable prognosis. Moreover, the transcriptional
features shared between cells in the metabolic state
and the PT signature support the hypothesis that PT
cells are a potential cell of origin for ccRCC [17]. Our
comprehensive scRNA-seq analysis, augmented by
deconvoluted bulk RNA-seq, connects ITH with
clinical heterogeneity. This connection is vital for
understanding the progression and treatment
response of ccRCC and for guiding the development
of personalized therapeutic strategies.

Third, this study presents a tumor ecosystem
framework that enhances our understanding of
ccRCC progression and mechanisms of resistance to
immunotherapy, enabling more accurate predictions
of immunotherapy efficacy. Unlike traditional scoring
systems that focus on the abundance of a single cell
type, such as CD8+ T cells, our ecosystem-based
classification offers distinct advantages. Single-cell
infiltration scores fail to differentiate between
functionally distinct cell states (e.g., exhausted vs.
effector T cells) or capture the interactions among cells
[74]. For instance, a tumor with high CD8+ T cell
infiltration and concurrent M2 macrophage
enrichment (e.g., ecosystem 2) may exhibit a more
severe immunosuppressive environment and worse
prognosis compared to a tumor with lower infiltration
but no such inhibitory factors (e.g., ecosystem 1). Our
classification method integrates cell types, functional
states, and their interactions, providing a more
comprehensive view of the TME. This approach
explains why ecosystem-based classification provides
more accurate prognostic predictions. The four
ecosystems identified in this study illuminate the
variable clinical course of c¢cRCC. Specifically,
myeloid immunosuppressive ecosystems, which
correlate with poor prognosis, illustrate tumor
immune evasion mechanisms: tumor cells promote
invasion through EMT and suppress immune
responses by recruiting MDSCs and polarizing M2
macrophages [75, 76]. These two mechanisms work
synergistically to create a formidable barrier to
immunotherapy, explaining primary resistance to
ICB. Our findings suggest that targeting specific
components of these ecosystems, such as EMT or M2

macrophages, could improve treatment strategies. By
shifting the perspective from a static “cell list” to a
dynamic, interactive “ecosystem”, we provide a
theoretical foundation for developing more precise
prognostic models and combination therapies in
ccRCC.

Fourth, our study not only identified FKBP10 as
an oncogene in ccRCC, but also further revealed its
novel downstream mechanism. FKBP10 has been
found to be overexpressed in several cancers,
including colorectal cancer, KRAS-mutant lung
adenocarcinoma, renal cell carcinoma, and gastric
cancer, and the knockdown of FKBP10 is sufficient to
inhibit the proliferation of tumor cells [77-80].
Consistent with these findings, our study shows that
FKBP10 is highly expressed in ccRCC tissues, and its
knockdown suppresses the malignant features of
ccRCC cells both in vitro and in vivo. Interestingly,
while the immunological role of FKBP10 in ccRCC has
been little explored, we reveal its significant role in
CXCL8 secretion via MEK/ERK activation, a
well-characterized MAPK pathway involved in cell
proliferation and survival [81]. FKBP10 likely
activates MEK/ERK through its PPlase domain,
which catalyzes the cis/trans isomerization of proline
residues, altering protein conformation, stability, and
kinase activity [24, 25]. Furthermore, we confirm that
CXCL8 induces M2 macrophage polarization,
aligning with prior studies [32, 82]. This work
provides a novel insight into how FKBP10 promotes
tumor cell secretion of CXCLS8, which in turn drives

macrophage polarization toward the
immunosuppressive M2 phenotype. This
autocrine-paracrine loop sustains TME

immunosuppression and may explain the correlation
between high FKBP10 expression and disease
progression in ccRCC patients. Given the
well-characterized functional domains of FKBP10
[80], the synergistic effect of siFKBP10 and anti-PD-1
therapy in our preclinical models indicates that
FKBP10 might be used as a target in combination with
anti-PD-1 regimens, to overcome resistance in tumors
with high FKBP10 expression. Furthermore, our
preclinical models also suggest that Reparixin, a
CXCR1/2 antagonist currently in clinical trials [83],
enhances the efficacy of anti-PD-1 therapy in ccRCC.
Our study identifies several promising therapeutic
targets that could offer new strategies to overcome
treatment resistance in ccRCC, warranting further
in-depth preclinical and clinical investigations.
Although our study provides new avenues for
understanding ccRCC, several limitations must be
acknowledged. First, in scRNA-seq data analysis, the
removal of batch effects might inadvertently eliminate
some biological signals. This issue, coupled with the
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limited sample size of our study, may result in an
underestimation of heterogeneity in ccRCC. The
functions of the identified CMs and tumor cell states
are primarily based on bioinformatics analysis, and
further experimental validation is required to confirm
these findings. Second, the retrospective nature of our
sample collection underscores the necessity for
prospective validation in multicenter cohort studies to
ensure the robustness and generalizability of our
findings. This limitation highlights the potential for
selection bias, as the datasets used may not be fully
representative of the broader ccRCC patient
population. It not only affects the model’s stability but
may also impact the generalizability of study results,
reducing the model’s performance on independent
validation sets. Additionally, our study did not fully
explore the mechanistic basis for the observed effects
on immunotherapeutic efficacy, which warrants
additional investigation. Furthermore, although the in
vitro and in vivo experiments provide evidence for the
role of FKBP10 in ccRCC, the lack of clinical trial data
limits the translation of these findings into clinical

practice. Future research should address these
limitations by incorporating prospective data
collection, improving data completeness and

diversity, exploring relevant biological mechanisms,
and validating our findings in larger and more
diverse patient populations to enhance clinical utility.
Besides, rigorous future clinical trials are essential to
determine the safety and efficacy of combining
immunotherapy with targeted FKBP10 therapy in
ccRCC.

Building on existing research, this study
systematically characterized the heterogeneity of the
TME in ccRCC. Our integrated analysis of tumors and
their microenvironment provides new insights into
ccRCC progression and identifies potential targets for
precision therapy. Notably, we uncovered a novel
FKBP10-MEK/ERK-ELF3-CXCL8 signaling axis that
plays a pivotal role in disease progression.
Components of this pathway, including FKBP10,
ELF3, CXCLS, and its receptor, represent promising
therapeutic targets, warranting further in-depth
preclinical and clinical research.
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