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Abstract 

The progression and therapeutic response of clear cell renal cell carcinoma (ccRCC) are critically shaped 

by the complex interactions between tumor cell heterogeneity and the tumor immune 

microenvironment (TIME). However, a comprehensive classification of the ccRCC ecosystem and its 

clinical relevance is lacking. To address this, we utilized comprehensive bioinformatics approaches to 

analyze ten public single-cell RNA sequencing datasets from 194 samples across 118 ccRCC patients. 

Across 1,172,154 cells, we identified four TIME subtypes (immune activation, innate immunity, 

immunosuppressive myeloid [ISM], and immune exclusion) and six functional states of tumor cells 

(metabolic, angiogenic, stress-responsive, antigen-presenting, cell cycling, and epithelial-mesenchymal 

transition [EMT]). The interplay between these components defined four immune ecosystems, among 

which the ISM subtype, coupled with the EMT tumor state was associated with the poorest prognosis. 

Using machine learning-based prognostic modeling, we highlighted FKBP10 as a critical prognostic gene. 

Mechanistically, we demonstrated that FKBP10 not only promoted EMT but also activated the 

MEK/ERK/ELF3 signaling axis, leading to an increased secretion of CXCL8 by tumor cells. Tumor-derived 

CXCL8, in turn, drove macrophage M2 polarization and myeloid-derived suppressor cell (MDSC) 

recruitment, thereby reinforcing an immunosuppressive TIME. Furthermore, targeting FKBP10 

synergized with anti-PD-1 therapy in suppressing tumor growth in vivo. Our work provides a 

comprehensive molecular atlas of the ccRCC ecosystem, establishes FKBP10 as a key regulator of 

immune suppression, and highlights its potential as a therapeutic target for personalized immunotherapy. 

Keywords: FKBP10, clear cell renal cell carcinoma, tumor heterogeneity, tumor microenvironment, anti-PD-1/PD-L1 therapy 

Introduction 

Clear cell renal cell carcinoma (ccRCC) is the 
most common and aggressive subtype of kidney 

cancer [1]. Localized ccRCC shows surgical curability, 
but metastatic disease remains refractory to 
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conventional chemotherapy. Although immune 
checkpoint blockade (ICB) has improved outcomes 
for a subset of patients [2-4], durable responses 
remain limited to about 30-40% of patients [5-7]. This 
therapeutic plateau emphasizes the critical need to 
better understand the mechanisms of immune evasion 
in the tumor microenvironment (TME). 

The ccRCC TME is a dynamic ecosystem 
composed of heterogeneous tumor cells and stromal 
components. Recent multi-omic and single-cell 
transcriptomic studies have begun to reveal this 
complexity, uncovering distinct molecular subtypes 
[2, 8-12], immune cell states [13-20], and spatial 
architectures [21, 22]. However, two critical 
limitations persist. First, many current analyses treat 
the tumor and its microenvironment as separate 
entities, ignoring their dynamic co-evolution and the 
integrated network of cross-talk that functionally 
defines the tumor ecosystem [19, 23]. Furthermore, 
previous studies have not connected TME subtypes to 
immunotherapeutic responses in ccRCC. This gap 
limits a comprehensive understanding of ccRCC 
biology and constrains the development of 
ecosystem-level prognostic biomarkers and 
therapeutic strategies. 

To address this gap, we propose an integrated 
framework that combines the composition of the 
TIME, the states of malignant cells, and intercellular 
communication networks to define stable, clinically 
relevant tumor ecosystems in ccRCC. This study aims 
to decode the ccRCC ecosystem by integrating 
multiple single-cell transcriptomic datasets. Our 
specific objectives were: (1) to define coherent TIME 
subtypes and epithelial cell states; (2) to integrate 
these components into comprehensive tumor 
ecosystems; (3) to establish a prognostic model based 
on ecosystem-specific gene signatures; and (4) to 
identify and experimentally validate key molecular 
drivers in high-risk ecosystem. 

Our investigation identified FK506 binding 
protein 10 (FKBP10) as a key candidate gene 
associated with high-risk ecosystems. FKBP10 is a 
member of FKBP family which contains a 
characteristic active peptidyl prolyl isomerases 
(PPIase) domain. PPIase is responsible for catalyzing 
the interconversion of cis/trans prolyl conformations, 
thus inducing rate-limiting change in protein 
conformation [24]. Members of this family are 
associated with several cellular processes, including 
protein folding, stability and trafficking, kinase 
activity, and receptor signaling [25]. FKBP family is 
important in regulating signaling pathways involved 
in inflammation, adaptive immune response, cancer, 
and developmental biology [26]. Although prior 
studies have linked FKBP10 to other cancers [27-30], 

its functional role, particularly in reprogramming the 
ccRCC immune microenvironment, remains 
unexplored. Our mechanistic investigations show that 
FKBP10 promotes tumor metastasis through the 
MEK/ERK/ELF3 signaling axis, stimulating CXCL8 
secretion that in turn drives M2 macrophage 
polarization and MDSC recruitment. Thus, our work 
not only presents a comprehensive atlas of the ccRCC 
ecosystem but also highlights FKBP10 as a central 
mediator of immunosuppressive niche formation, 
offering a novel therapeutic target for this aggressive 
malignancy. 

Methods 

Data Availability 

The entire study design is succinctly illustrated 
in a detailed flowchart (Supplementary Fig. S1). 
Detailed information about resources and reagents is 
provided in Supplementary Table S1. The acquisition 
of single-cell RNA-sequencing (scRNA-seq) datasets 
was facilitated from sources including: GSE131685 
[18], GSE159115 [17], GSE207493 [19], GSE224630 [31], 
SRZ190804 [21], Young et al. [16], Braun et al. [13], Bi et 
al. [32], Li et al. [33], Obradovic et al. [34]. The last three 
datasets were used as external datasets and used for 
validating our main findings. The spatial 
transcriptomic data analyzed in this study, including 
the H&E-stained tissue image, were obtained from the 
publicly available dataset published by Meylan et al. 
[22]. Bulk RNA-seq datasets were procured from The 
Cancer Genome Atlas (TCGA-KIRC cohort) and 
ArrayExpress (E-MTAB-1980) [35]. Additionally, 
datasets from ICB-treated/CAR-T-treated cohorts 
were obtained: CheckMate cohorts, detailed in Braun 
et al. [23]; JAVELIN Renal 101, documented by Motzer 
et al. [36]; IMvigor210 cohort [37]; VanAllen cohort 
[38]; Kim cohort (GSE135222); Cho cohort 
(GSE126044); Hugo cohort (GSE78220); and Lauss 
cohort (GSE100797). 

Multicenter Cohort and Bulk RNA Sequencing  

This study utilized surgical specimens from a 
multicenter cohort of 61 patients with ccRCC treated 
with ICB-tyrosine kinase inhibitor (TKI) combination 
therapies. Fresh tumor tissues were prospectively 
collected from four Chinese medical institutions: First 
Affiliated Hospital of Sun Yat-sen University 
(Guangzhou, China; n = 12): Axitinib-Toripalimab (n 
= 9), Axitinib-Pembrolizumab (n = 2), 
Lenvatinib-Pembrolizumab (n = 1); Sun Yat-sen 
University Cancer Center (Guangzhou, China; n = 21): 
Axitinib-Toripalimab (n = 12), 
Axitinib-Pembrolizumab (n = 6), 
Lenvatinib-Pembrolizumab (n = 3); Renji Hospital, 
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Shanghai Jiao Tong University (Shanghai, China; n = 
13): Axitinib-Toripalimab (n = 13); Shengjing 
Hospital, China Medical University (Shenyang, 
China; n = 15): Axitinib-Toripalimab (n = 15). 
Specimens were obtained during surgery, 
immediately snap-frozen in liquid nitrogen, and 
stored at -80℃ until RNA extraction. 

Bulk RNA-seq libraries were prepared via the 
TruSeq Stranded mRNA Library Prep Kit (Illumina) 
and sequenced on an Illumina NovaSeq 6000 
platform. Raw reads were processed through FastQC 
for quality control, followed by adapter trimming and 
filtering with Trimmomatic. Clean reads were aligned 
to the GRCh38 human genome using STAR, and gene 
expression counts were quantified via featureCounts. 

Identification of Cellular Modules and TIME 

Subtypes 

To examine the cellular composition and 
heterogeneity within TIME, we investigated the 
co-existence patterns of different cell subpopulations 
[39]. Pairwise correlation values between the 
normalized frequencies of any two clusters within 
individual tumor samples were quantified using the 
corr.test function. These resulting correlation 
coefficients were subjected to hierarchical clustering 
employing the pheatmap package in R, utilizing the 
Ward.D2 clustering method and correlation distance 
as metrics. To avoid potential distortion of clustering 
due to the limited cell number of certain clusters, 
samples that contained fewer than 1,000 
non-epithelial cells were excluded from this analysis. 
For each patient, the cluster-normalized frequencies 
of clusters from the same cellular module were 
summed, and the most abundant cellular module was 
designated as the dominant cellular module for this 
patient. Each cellular module corresponds to a TIME 
subtype, in which the phenotype was designated 
based on four aspects: (1) cellular composition, (2) 
marker genes expression and KEGG pathways 
enrichment, (3) TIME-related gene signatures as 
previously described (Table S2) [22, 40], (4) 
prognostic relevance verified with BisqueRNA that 
predicted cell type composition in bulk expression 
[41]. Finally, we identified and listed the top 10 
marker genes for the five most prevalent cell types 
within each module. These marker genes were 
defined as the molecular signature for specific cellular 
modules. 

Classification of Intra-tumoral Gene 

Expression Programs 

Consensus non-negative matrix factorization 
(cNMF) was employed to identify gene expression 
programs (GEPs) in tumor samples [42]. Samples with 

fewer than 100 tumor cells were filtered out, and 43 
tumor samples were selected for this analysis. For 
each sample, cells with fewer than 300 unique genes 
and genes detected in fewer than 5 cells were filtered 
out. Then we selected 2,000 genes with the most 
over-dispersion, as determined by the v-score [43]. 
Each gene was scaled to unit variance before running 
cNMF. We used cNMF with default parameters, 
except for the maximum number of iterations (=200). 
We adjusted the number of NMF components 
(k-value) by comparing the trade-off between 
predictive accuracy and solution stability, as 
described by Alexandrov et al. [44]. We then obtained 
two matrices for each sample: one is the usage matrix 
(cells×programs) that captured normalized program 
usage in each cell (i.e., the proportion of the cell’s 
transcripts attributed to each program), and the other 
is the GEP matrix (genes×programs) that listed the 
top-ranked genes within the programs according to 
their loadings of the NMF factor. We retained a total 
of 250 GEPs whose average cell usage was larger than 
0.01 according to the Program-Ratio plots. The 250 
programs were then compared by hierarchical 
clustering, using one minus the Pearson correlation 
coefficient over all gene scores as a distance metric. 
Six clusters of signatures were manually identified 
and used to define meta-programs (MPs). For each 
MP, we combined the top 100 genes of each GEP and 
calculated the average loading for each gene. We 
summarized the total loadings for repetitive genes, 
retained the original loadings for exclusive genes, and 
divided the loadings for each gene by the number of 
programs within the MP. Finally, the top 30 genes 
with the highest loading were identified as MP 
marker genes.  

The functions of MPs were defined based on 
hallmark pathway analysis using the GSVA, and 
prognostic relevance. Prognostic associations were 
determined based on the predicted cell type 
composition in bulk expression by CIBERSORTx. 

Jaccard Similarity Analysis 

The Jaccard similarity index was calculated to 
quantify the transcriptional resemblance between six 
MPs of malignant cells and the signatures of 12 cell 
types from PanglaoDB (https://panglaodb.se/) 
(Table S3). The Jaccard index was calculated using 
the top 50 marker genes with the following formula:  

J (A, B) = |A Ո B| / |A U B| 

Cell-Cell Interaction Analysis 

CellphoneDB facilitated the investigation of 
ligand-receptor pairs, highlighting significant 
interactions after adjusting for frequency constraints 
below 0.1% or above 2% of all cluster–cluster 
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combinations [39, 45]. The total number of 
ligand-receptor pairs among the different clusters 
within the same ecosystem was counted. We assumed 
that a ligand-receptor pair was enriched in a specific 
ecosystem if Ro/e > 1. First, the expected count of each 
ligand-receptor pair was calculated using the χ2 test. 
Second, using Epitools, we calculated the Ro/e value 
according to the following formula: 

𝑅𝑜/𝑒 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

To identify the potential ligands of myeloid cells 
that drive the unique phenotype of EMT tumor cells, 
we used the signature of EMT for NicheNet analysis 
[46]. 

Establishment of Ecosystem Specific Signature 

and Machine Learning-based Prognostic 

Models 

An ecosystem is defined as a distinct entity 
formed by the hierarchical clustering of malignant cell 
states and TIME subtypes, which reveals functional 
interplay patterns among these components. 
Ecosystem-specific signatures were established by 
integrating cellular module signatures, corresponding 
MP signatures, and the ten ligand-receptor pairs with 
the highest Ro/e within the ecosystem. The enrichment 
score of ecosystem-specific signatures in bulk 
RNA-seq was estimated by ssGSEA. The signature 
from the most prognostically unfavorable ecosystem 
was selected to construct prognostic models. 

To develop a consensus immunosuppressive 
myeloid and epithelial-mesenchymal transition 
interactive signature (ISM-EMT-Sig) with superior 
accuracy and stability, we integrated 11 machine 
learning algorithms according to previous studies 
[47-50]. The integrative algorithms encompassed 
LASSO regression, Elastic Net (Enet), ridge 
regression, Random Survival Forest (RSF), CoxBoost, 
Stepwise Cox regression, Supervised Principal 
Component Analysis (SuperPC), Partial Least Squares 
Regression for Cox models (plsRcox), Survival 
Support Vector Machine (survival-SVM), generalized 
boosted regression Modeling (GBM), and Kang score. 
The Kang score, in particular, was generated using an 
approach similar to that used by Kang et al. [51] and 
Wang et al. [52]. Specifically, algorithms such as 
LASSO, Kang score, RSF, StepCox, and CoxBoost are 
capable of variable screening. This enables us to use 
these five algorithms for variable selection and 
subsequently combine them with the remaining 
algorithms to build a prognostic model. Alternatively, 
we can use any of the 11 algorithms independently to 
construct the model. Ultimately, this methodology 
allows us to generate a total of 126 models. 

The signature was generated as follows: (a) 
Univariate Cox regression identified prognostic 
mRNAs in the TCGA-KIRC cohort; only the genes 
with an expression fold change > 1.5 or < -1.5 and an 
FDR < 0.01 were selected for subsequent analysis. 
Subsequent evaluation of the selected differentially 
expressed genes (DEGs) for their statistical association 
with patient survival using a univariate Cox 
proportional hazards regression model, prioritizing 
DEGs that align with survival trends (e.g., DEGs 
highly expressed in the ecosystem 3 group indicating 
a hazard ratio (HR) > 1 or those prevalent in other 
groups with a HR < 1); (b) 126 algorithm 
combinations were applied to these prognostic 
mRNAs to construct predictive models within the 
TCGA-KIRC cohort (training set: 70%, internal 
validation set: 30%; (c) All models were evaluated 
across four validation datasets (E-MTAB-1980, 
CheckMate, JAVELIN, and SYSUFAH). (d) For each 
model, the Harrell concordance index (C-index) was 
calculated across all validation datasets. Besides, the 
number of genes included in each model was defined 
as model size. Considering the accuracy of the model 
and its simplicity, we aimed to include as few genes as 
possible (within 15 genes) to achieve the best 
prediction effect. Therefore, the model with the 
highest average C-index across validation datasets, 
incorporating no more than 15 genes, was selected as 
the optimal prognostic tool. 

Colony Formation Assay 

The cells were harvested at 70% confluence and 
seeded into the 6-well plates. Each cell line was 
seeded in triplicate. After 2 weeks of culture, cells 
were fixed with formaldehyde for 15 minutes. The 
cells were then stained with crystal violet staining 
solution for 30 minutes. The colonies were imaged 
using Amersham Imager 600 imaging system, and 
were counted and analyzed using ImageJ software. 

Cell Proliferation Assay 

The cells were counted and seeded in the 96-well 
plate for 6 days. After washing the cells with PBS, 
CCK8 was added to RPMI-1640 (10:90) every 24 
hours. After incubation with CCK8 for 2 hours, 
absorbance at 450 nm was measured using a 
microplate reader. 

Transwell Assay 

Matrigel (diluted with sterile deionized ice-cold 
water in a 1:2 ratio) was added to the membrane of the 
transwell insert, and the plate was incubated for 1 
hour. The cells were then seeded onto the membrane 
of a 24-well transwell insert. Afterward, the migration 
buffer containing chemoattractant was added below 
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the 24-well transwell insert and the plate was 
incubated for 24 hours. Remove the Matrigel by 
gently using a cotton tipped applicator which was 
infiltrated with PBS. Formaldehyde was added to the 
24-well plate for 30 minutes. After washing the 
transwell inserts, crystal violet staining solution was 
used for cell staining. After 10 minutes, the transwell 
inserts were washed three times with PBS. When 
dried out, the transwell insert was observed under a 
microscope and imaged by OLYMPUS IX83 inverted 
imaging system [53]. Migrating cells were counted 
and analyzed using ImageJ software. 

Subcutaneous Tumorigenesis  

For the subcutaneous tumor model, 769-P 
human RCC cells stably transfected with lentiviral 
shRNA negative control (shNC) and shFKBP10 or 
vehicle and over-expression of DNASE1L3/DPEP1 
were subcutaneously implanted into 4-week-old male 
nude mice (2×106 cells/mouse). 

To investigate the roles of FKBP10 and CXCL8, 
769-P cells (2×106 cells/mouse) stably transfected with 
shNC or shFKBP10 were implanted into 4-week-old 
male BALB/c mice, with or without CXCL8 injections 
every 3 days. Additionally, 769-P cells with lentiviral 
vehicle or FKBP10 overexpression were implanted 
into BALB/c mice. One week post-implantation, IgG 
(0.1 mg/mouse), CXCL8 neutralizing antibodies 
(0.1 mg/mouse), or CXCR1/2 inhibitor reparixin (30 
mg/kg) in PBS were injected intraperitoneally every 2 
days for 3 weeks. 

Tumor size and volume were calculated as 
tumor volume (mm3) = (longest diameter) × (shortest 
diameter)2 × 0.5. At the endpoint, tumors were 
harvested and weighed. 

Immunofluorescence Staining 

Immunofluorescence staining was performed on 
FFPE ccRCC sections following antigen retrieval and 
blocking procedures as described for 
immunohistochemistry. Sections were co-incubated 
with anti-CD86 (1:100) and anti-CD206 (1:200) 
overnight at 4℃. Species-specific secondary 
antibodies were applied for 1 hour in the dark: Alexa 
Fluor 488-conjugated Goat Anti-Mouse (1:500) and 
Alexa Fluor 555-conjugated Goat Anti-Rabbit (1:500). 
Nuclei were stained with DAPI for 5 minutes. 

Vesicle-like PLGA-based Nanoparticle (VNP) 

Formulation of siRNA Drug and Application of 

VNPsiRNA In Vivo 

VNPsiRNA was prepared using a double 
emulsion method, as previously described [54]. The 
2’-O-Methyl (2’-OMe) modified siRNA was first 
mixed with chloroform, containing DOTAP and 

mPEG5k-b-PLGA11k (50:50), and emulsified by 
sonication on ice. This primary emulsion was then 
further emulsified in DEPC water through additional 
sonication on ice. The chloroform was subsequently 
removed using a rotary evaporator. The resulting 
nanoparticle dispersion was transferred to an 
ultrafiltration device and centrifuged to remove any 
unencapsulated compounds. The nanoparticles 
exhibited a spherical shape, with a particle size of 150 
nm and an encapsulation efficiency of 49.2%. siRNA 
encapsulation efficiency was determined by 
high-performance liquid chromatography analysis. 
For syngeneic tumor models, Renca murine RCC cells 
were injected into 5- to 6-week-old male Balb/c mice 
(2×106 cells/mouse), VNPsiRNA were administrated 
via intratumoral injection (40μg/mouse every 2 days) 
when tumors reached 50 mm3. Tumors were 
measured every alternate day and weighed upon 
harvesting. 

Cytokine Array Analysis 

The cytokine secretion profiles in conditioned 
media from tumor cell cultures were analyzed using 
the Proteome Profiler Human Cytokine Array Kit 
following the manufacturer’s protocol. Briefly, tumor 
cells treated with recombinant FKBP10 (1 μg/ml, 24 
hours) were cultured in serum-free medium for 24 
hours to eliminate exogenous protein interference. 
Conditioned media were collected, centrifuged to 
remove cellular debris, and aliquoted for immediate 
analysis. Array data were quantified by measuring 
the pixel density of duplicate spots using ImageLab 
6.1 software. Background signal from negative control 
spots was subtracted, and relative cytokine levels 
were normalized to internal positive controls on each 
membrane. This method enabled simultaneous 
semi-quantitative screening of multiple cytokines, 
with sensitivity thresholds and cross-reactivity 
profiles as specified by the manufacturer. 

Embedded Co-culture Transwell Assay 

THP-1 monocytes (human leukemia monocytic 
cell line) were cultured in RPMI-1640 complete 
medium supplemented with 10% FBS and 1% 
penicillin/streptomycin. Macrophage differentiation 
was induced by treating cell suspensions with 100 
ng/mL phorbol 12-myristate 13-acetate for 24 hours. 
Following incubation, differentiated M0 macrophages 
were obtained through three gentle PBS washes to 
remove non-adherent cells, and were then cultured in 
fresh complete medium until reaching 80% 
confluency. 

For the co-culture assay, Transwell inserts were 
placed into 24-well plates. M0 macrophages (2×104 
cells/well) were seeded into the lower chamber, while 
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cancer cells (2×104 cells/well) were plated in the 
upper chamber. In the experimental groups, 
recombinant human CXCL8 (20 ng/mL) was added to 
both chambers to establish a chemotactic gradient. 
Control groups received equivalent volumes of PBS. 
The co-culture system was maintained for 48 hours 
under standard culture conditions. Cell invasive 
capacity was assessed using the established Transwell 
protocol as previously described.  

Flow Cytometry 

Tumors from mice were digested and prepared 
into single‐cell suspension. Cells were incubated with 
antibodies for 30 minutes. The antibodies used 
included CD45, CD11b, F4/80, CD80, CD86, CD206, 
and Gr-1. Antibodies were used at ≤ 1.0 µg per million 
cells in a 100 µL volume. Data acquisition was 
performed using a Beckman CytoFLEX flow 
cytometer, and the collected data were analyzed with 
FlowJo v10. 

Prediction of Potential Transcriptional Factors 

The putative promoter region of the CXCL8 gene 
was retrieved from the NCBI database (GRCh38.p14). 
Based on canonical promoter annotation principles, 
genomic sequence spanning 2,000 bp upstream of the 
transcription start site (TSS) and 100 bp downstream 
was defined as the promoter region. The genomic 
sequence was extracted and validated using the NCBI 
Genome Data Viewer.  

To identify transcription factors (TFs) with 
potential binding activity in the CXCL8 promoter, the 
UCSC Genome Browser (https://genome.ucsc.edu/) 
was employed [55]. Using the GRCh38/hg38 human 
reference genome assembly, the promoter coordinates 
(Chr4:73,738,569-73,740,669) were input into the 
search interface. Publicly available ChIP-seq and 
chromatin accessibility datasets were queried, and 
binding events were filtered to retain only those with 
a binding score ≥ 600. To prioritize clinically relevant 
TFs, differential expression analysis was performed 
using the GEPIA2 database 
(http://gepia2.cancer-pku.cn/) [56], focusing on TFs 
exhibiting significant positive correlations (P < 0.05, 
Pearson correlation) with CXCL8 expression. 

For the candidate TFs identified in the preceding 
step, de novo motif scanning was conducted using 
JASPAR (http://jaspar.genereg.net/), a curated 
database of TF-binding profiles [57]. A conservative 
relative profile score threshold of 90% (corresponding 
to a P < 1×10-3) was applied to minimize false-positive 
predictions. Predicted binding sites were visualized 
and annotated using JASPAR integrated analysis 
tools, with genomic coordinates and motif scores 
reported for all high-confidence hits. 

ChIP-seq 

Cross-linked chromatin was prepared by 
treating cells with 1% formaldehyde, followed by 
quenching with 125 mM glycine. Chromatin was 
extracted using lysis buffer and sonicated to 
fragments ranging from 100 to 500 bp. 
Immunoprecipitation was performed overnight at 
4 ℃ with ELF3 antibodies bound to Dynabeads. The 
immunoprecipitated DNA was purified and used for 
library construction with the NEBNext Ultra DNA 
Library Prep Kit for Illumina. Libraries were prepared 
through end repair, adapter ligation, USER enzyme 
digestion, and PCR amplification. Size selection was 
carried out using AMPure XP beads, and library 
quality was assessed with Qubit quantification and a 
high-sensitivity DNA chip. Sequencing was 
performed on the Illumina NovaSeq 6000 platform to 
generate 150 bp paired-end reads.  

Raw sequencing reads were processed with fastp 
to remove adapters, poly-N sequences, and 
low-quality bases. Clean reads were aligned to the 
reference genome using Bowtie2. Peak calling was 
conducted with MACS2, and results were visualized 
with IGV. Peak annotation was performed using the 
ChIPseeker R package. Differential peak analysis was 
conducted using MAnorm. 

Statistical Analysis 

R Project, RStudio, and Python were used for 
sequencing and machine learning analysis, while 
GraphPad Prism was used for the statistical analysis 
of experimental data. 

For intergroup comparisons, a two-tailed 
Student’s t-test (parametric, normal distribution) or 
Welch’s t-test (unequal variances) was used. For 
non-normally distributed data, the Wilcoxon 
rank-sum test was applied. Paired t-tests were used 
for paired samples, and one-way ANOVA for 
multiple group comparisons. Chi-square or Fisher’s 
exact tests were used for categorical data. 

Survival analysis was performed using 
Kaplan-Meier curves and assessed with the Log-rank 
test. HR were calculated using the Cox proportional 
hazards model. Pearson or Spearman correlation 
coefficients were used depending on the data 
distribution. Statistical significance was set at P < 0.05. 

Results 

Enrichment of Myeloid Cells in 

Immunotherapy-Resistant ccRCC 

We integrated and normalized seven public 
scRNA-seq datasets comprising 73 tumor samples, 37 
adjacent normal tissues, 2 thrombi, and 2 metastatic 
lymph nodes from 56 individuals (Table S4). After 
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stringent quality control, we obtained 639,037 cells 
from 742,300 cells spanning 114 human samples (Fig. 

1A; Fig. S2-3). Louvain clustering revealed six clusters 
across samples spanning NK and T lymphoid, B 
lymphoid, myeloid, endothelial and epithelial cells, 
and fibroblasts (Fig. 1B). 

We analyzed canonical marker genes for each 
cell type and examined the clinical characteristics (Fig. 

1C). Notably, immunotherapy-resistant patients, 
especially those with lymph node metastasis, 
exhibited high expression of myeloid cell markers. 
Cell cycle analysis indicated that the majority of these 
cells resided in the G0/G1 phase, indicative of relative 

dormancy or slow proliferation. Conversely, patients 
responsive to ipilimumab/nivolumab showed 
increased expression of CD8+ T cell markers, 
suggesting active immune response. In addition, our 
spatial analysis uncovered regional differences in 
immune cell distribution within the tumors, with 
myeloid cells enriched in the lower and lateral tumor 
regions, and T cells being prevalent elsewhere. These 
findings suggest that resistance to ICB may be linked 
to a higher presence of myeloid cells and a lower 
presence of CD8+ T cells, with distinct spatial patterns 
across the tumor. 

 

 
Figure 1. Single-cell transcriptional landscape of the ccRCC ecosystem. (A) Scheme of the overall study design. TIME, tumor immune microenvironment; ICB, immune 

checkpoint blockade; IHC, immunohistochemistry. (B) UMAP plot showing six major cell types. Dots represent individual cells, and colors represent different cell populations. 

T&NK, T lymphoid and natural killer cells. (C) Dot plot showing the marker genes for each major cell population and several clinical characteristics. Treatment refers to any 

therapeutic interventions administered to the samples prior to single-cell profiling. Nivo, Nivolumab (anti-PD-1 monotherapy); Ipi, Ipilimumab (anti-CTLA-4 monotherapy). 

Region refers to the sampling regions of tumor tissues. Near, tumor tissue directly adjacent to normal kidney; Far, tumor tissue distal to normal kidney; Center, tumor tissue 

between Near and Far. VHL+/-, with/without Von Hippel-Lindau gene mutation. 
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Cellular Module Analyses Reveal Four TIME 

Subtypes 

Building on these insights into myeloid cell 
enrichment, we next sought to explore the broader 
cellular composition of TIME to understand its 
functional implications for therapy resistance. From a 
cohort of 530,848 single cells, we identified 75 distinct 
cell clusters (Fig. 2A; Table S5). Notably, tumors with 
high tertiary lymphoid structure (TLS) signature 
expression exhibited significant enrichment of 
antibody-secreting plasma cells (IgG, IgA, and 
IFITM3+ plasma cells) and GPR183+ memory B cells 
(Fig. S4A-E). These subsets expressed key germinal 
center B-cell markers (Fig. S4F), suggesting functional 
germinal center reactions within the TLS. This finding 
aligns with previous studies showing that in TLS+ 
RCCs, plasma cells secrete higher levels of IgG and 
IgA, supporting the role of TLS in anti-tumor 
immunity and its association with favorable 
immunotherapy responses [22]. 

Hierarchical clustering was then applied to 
investigate the functional roles of all immune cell 
clusters. This helped us identify four stable cellular 
modules (CMs), CM1 to CM4 (Fig. 2B). The four CMs 
correspond to four TIME subtypes based on four 
criteria: (1) expression of TIME-related gene 
signatures (Fig. 2C; Fig. S5A-B), (2) cell cluster 
proportions (Fig. 2D), (3) prognostic and ICB 
responsive relevance (Fig. 2E; Fig. S5C-D), (4) 
functional signaling pathway enrichment (Fig. 2F; 

Table S6). 
The CM1-IA subtype (immune activation, IA) 

exhibited prominent immune activation signatures 
encompassing co-stimulatory molecules, effector cells, 
checkpoint markers, and MHC-I/II pathways 
through immunoglobulin receptor binding. 
Dominated by effector memory 
(CD8+GZMK+/CXCL13+/DUSP4+), tissue-resident 
(CD8+ZNF683+) T cells, regulatory T cells 
(CD+FOXP3+), and cytotoxic NK subsets 
(GZMH+/PTGDS+), CM1-IA demonstrated 
prognostic significance with improved overall 
survival (OS) in TCGA cohort and enhanced mTOR 
inhibitor (everolimus) response efficacy. 

The CM2-II subtype (innate immunity, II) 
displayed distinct anti-tumor cytokine signatures 
with enrichment of NK cells, CD16+ macrophages, 
and naïve CD8+ T cells (SELL+/IL7R+). Its 
association with immunological regulatory pathways, 
including TNF/NF-κB signaling pathways 
underscored its significance. BisqueRNA 
deconvolution revealed no significant survival 

variations in CM2-II cell populations. 
The CM3-ISM subtype (immunosuppressive 

myeloid, ISM) demonstrated elevated 
myeloid-mediated immune suppression and 
tumor-associated macrophage signatures. Pathway 
enrichment analysis pointed to NOD-like receptor 
signaling pathway, which was reported to aggregate 
MDSCs and induce the M2 macrophage polarization, 
thereby forming an immunosuppressive 
microenvironment [58]. CM3-ISM was notably 
enriched in ipilimumab/nivolumab-resistant patients. 
Elevated ISM abundance consistently predicted poor 
prognosis in both TCGA and everolimus-treated 
cohorts, and correlated with compromised anti-PD-1 
response. 

The CM4-IE subtype (immune exclusion, IE) 
exhibited robust expression signatures related to 
cancer-associated fibroblasts (CAFs), EMT, 
extracellular matrix remodeling, and angiogenesis. 
This fibroblast- and endothelial cell-enriched subtype 
showed activation of stromal reprogramming 
pathways. While CM4-IE enrichment correlated with 
poor prognosis in TCGA cohort, it paradoxically 
associated with improved outcomes in the treated 
patients (CheckMate). This improved response was 
linked to a distinct TME characterized by spatial 
co-localization of CM4-IE-high cells with CD8+ T cells 
and an enrichment of H3-3B+ fibroblasts, as revealed 
by our spatial transcriptomic analysis (Fig. S4G-H). 

Inter-tumor Heterogeneity of TIME Subtypes 

Following the classification of TIME subtypes, 
we extended our investigation to examine the 
heterogeneity of TIME across 52 ccRCC patients 
(Table S7). Different tumor statuses and pathological 
grades exhibited obvious TIME preference, indicating 
an association with aetiologies and tumor progression 
(Fig. S5E). Analyses of cellular composition 
demonstrated a striking divergence in immune 
architecture: 30.8% (16/52) of cases exhibited 
monotypic TIME dominance (≥ 65% single-subtype 
infiltration), while 69.2% (36/52) displayed 
heterotypic TIME integration (Fig. S5F). This binary 
stratification uncovered significant clinical 
associations: the monotypic subgroup showed a 
higher prevalence of advanced-stage disease (Stage 
III/IV, P = 0.034) (Fig. S5G). 

Our analysis of TIME composition reveals 
significant heterogeneity in ccRCC, with monotypic 
infiltration being linked to more aggressive disease. 
These findings highlight the importance of TIME 
patterns in tumor progression. 
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Figure 2. Four distinct cellular modules of TIME in ccRCC. (A) UMAP plots showing 75 TIME cell clusters. Cells are grouped into five panels: T cells and NK cells, 

myeloid cells, B cells, endothelial cells, and fibroblasts, with color coded by cluster ID. Bn, naïve B cell; Bm, memory B cell. (B) The four cellular modules based on Pearson 

correlations of cell clusters (shown in Fig. 2A) from samples. Each cellular module corresponds to a TIME subtype, in which the phenotype was designated based on four aspects 

shown in Fig. 2C-F. (C) Differential expression of immune-related signatures in four TIME subtypes. The Wilcoxon rank-sum test (two-sided) was applied for significance testing. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001. IA, immune activation; II, innate immunity; ISM, immune suppressive myeloid; IE, immune exclusion. (IA, n = 28 cases, II, n = 7 cases, ISM, 

n = 6 cases, IE, n = 15 cases, n denotes biologically independent patients). (D) Pie charts showing the proportion of cell clusters from each cellular module, with key cell clusters 

annotated. (E) Prognostic relevance of four TIME subtypes. Overall survival of cases was stratified by each cellular module proportion. Log-rank test was used for statistical 

analysis. (F) Dot heatmap showing enriched Hallmark pathways across four TIME subtypes. P.adjust refers to the Benjamini–Hochberg-adjusted p-value.  

 

Classification of Six Malignant Epithelial States 

After investigating TIME heterogeneity, we next 
focused on malignant epithelial cell diversity in 

ccRCC. We identified malignant epithelial cells in 
ccRCC using copy number variant (CNV) score (Fig. 

3A). CNV analysis revealed that most of these 
epithelial cells were tumor cells, showing high 



Int. J. Biol. Sci. 2026, Vol. 22 

 

 

https://www.ijbs.com 

1816 

expression of ccRCC marker genes, including NNMT, 
CA9, NDUFA4L2, and ANGPTL4 [17] (Fig. 3B). We 
then analyzed the transcriptional profiles of these 
cells to explore intra-tumor heterogeneity. Using 
cNMF, we clustered epithelial cells within each 
sample, resulting in 250 distinct subclusters across 114 
ccRCC tumors. The heatmaps show the top 30 genes 
for each subcluster (Fig. S6-16). To further refine our 

analysis, we grouped these subclusters into six core 
meta-programs (MPs, MP1 to MP6; Table S8). Cells 
expressing ≥ 70% of program genes were defined as 
programmed cells (Fig. 3C-D). We further explored 
the most activated pathways in the programmed cells 
to define their specific states (Fig. 3E; Fig. S17; Fig. 

S18A). 

 

 
Figure 3. Six common gene expression programs of epithelial cells in ccRCC tumors. (A) Large-scale CNVs for ccRCC epithelial cells. Red regions stand for gene 

amplifications, while blue regions for gene deletions. The inferred CNV pattern of non-malignant epithelial cells is shown in the upper panel. Malignant cells from different patients 

are indicated by different color bars on the left of the heatmap. (B) t-SNE plot of all epithelial cells (n = 108,189), color-coded by cell types, CNV score, and expression levels of 

classic ccRCC biomarkers (NNMT, CA9, NDUFA4L2, ANGPTL4), respectively. Previously recognized markers reaffirm the accuracy of tumor cells identified by InferCNV. (C) 

The six malignant meta-programs (MPs) across the tumors. Each meta-program corresponds to a tumor cell state that was defined based on Fig. 3E-F. The hierarchical clustering 

heatmap shows the pairwise correlations of 250 gene expression programs across 43 tumors. (D) Heatmap depicting the expression of genes within each MP across single cells. 

Randomly selected 5% of cells (n = 3,398) for six MPs are shown, with annotated by cell state, T, N, M stage, AJCC stage, VHL status, CNV score, age, and gender. (E) Heatmap 

showing different pathways enriched in cells for each MP, colored by z-score normalized GSVA scores. (F) Jaccard similarities of the signatures between six MPs (y axis) and 

twelve renal cell types (x axis). (G) Stacked histograms showing the proportions of malignant epithelial cell states for each patient. (H) Forest plots showing overall survival in four 

ccRCC cohorts (TCGA-KIRC, E-MTAB-1980, CheckMate, and SYSU cohort). The high and low groups were divided by the best cutoff value of CIBERSORTx deconvoluted cell 

fractions corresponding to 6 MPs. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Our analysis revealed that MP1-Metabolic was 
primarily characterized by gene sets associated with 
metabolism (e.g., CYB5A, GPX4, UQCRQ). Pathway 
analyses further demonstrated the activation of 
metabolic pathways, including oxidative 
phosphorylation, fatty acid metabolism, xenobiotic 
metabolism, and heme metabolism.  

MP2-Angiogenic was enriched in genes 
associated with angiogenesis (e.g., PLVAP, VEGFA, 
ANGPT2) and exhibited upregulation of key 
signaling pathways such as angiogenesis, 
Wnt/β-catenin signaling, TNF-α/NF-κB signaling, 
IL-2/STAT5 signaling, and the IL-6/JAK/STAT3 
signaling pathway.  

MP3-Stress-responsive encapsulated immediate 
early genes (e.g., EGR1, JUN, FOS) that respond to 
cellular stimuli, with a notable upregulation of TNF-α 
signaling, UV response, p53, and apoptosis pathways.  

MP4-Antigen-presenting was distinguished by 
increased expression of MHC-II molecules (e.g., CD3, 
PDCD1, HLA family), integral to the initiation of 
adaptive antitumor immune responses. The activation 
of immunity-related pathways, including allograft 
rejection, IFN-γ, IFN-α response, and the complement 
pathway, potentially indicated reactivity to tumor 
neoantigens.  

MP5-Cell cycling was characterized by high 
expression of genes involved in cell proliferation (e.g., 
MKI67, TOP2A, STMN1), suggesting active tumor cell 
proliferation through the activation of E2F targets, 
G2M checkpoint, and MYC target pathways.  

Finally, MP6-EMT was marked by the 
expression of stress keratins (e.g., VIM, COL3A1, 
COL1A1, KRT6), which are associated with 
keratinocyte hyperproliferation and could potentially 
enhance tumorigenesis and tumor growth. 

Differentiation Features of Six Malignant 

Epithelial States 

To elucidate the differentiation characteristics of 
six malignant epithelial cell states in ccRCC, we 
integrated transcriptomic similarity analysis with 
stemness quantification. MP1-Metabolic exhibited 
striking molecular similarity with proximal tubular 
epithelial cells, preserving most of renal 
developmental transcription factors including 
HNF4A and PPARA. This molecular continuity 
supports the theory that ccRCC originates from 
tubular epithelial progenitors [16]. MP2-Angiogenic 
demonstrated an unexpected transcriptional overlap 
with endothelial cells, particularly in VEGF signaling 
components (FLT1, KDR) and extracellular matrix 
remodeling enzymes (Fig. 3F). 

CytoTRACE analysis revealed a stemness 
gradient across malignant cell states (Fig. S18B). 

MP1-Metabolic and MP2-Angiogenic exhibited the 
lowest stemness indices, indicating terminal 
differentiation states with low differentiation 
potential. MP6-EMT cells had significantly higher 
stemness scores than the other subtypes, indicating 
higher differentiation potential (P < 0.001). Notably, 
MP6-EMT dominated the tumor ecosystem, 
constituting most of total malignant cells across 
samples (Fig. S18B right panel). This stemness 
hierarchy showed striking clinical relevance: 
advanced-stage patients (T3-T4/N1/M1) harbored a 
higher proportion of MP6-EMT cells, and MP6-EMT 
enrichment conferred a higher risk of CTLA-4/PD-1 
treatment failure (P < 0.05) (Fig. S18C). Taken 
together, the analysis suggests that the MP6-EMT 
tumor cells may have stronger self-renewal ability 
and therapeutic resistance potential. 

These results revealed that the malignant cell 
states of ccRCC showed different differentiation 
characteristics. MP1-Metabolic/MP2-Angiogenic 
represented terminal differentiation states, 
characterized by high transcriptional concordance 
and low stemness. In contrast, MP6-EMT occupies a 
more primitive position, marked by stem-like features 
and transcriptional divergence. This systematic 
characterization delineates malignant plasticity along 
differentiation hierarchies and establishes prognostic 
correlations. It provides a conceptual framework for 
mapping tumor evolutionary trajectories to clinical 
outcomes. 

Clinical Association of Six Malignant Epithelial 

States 

Our analysis revealed the clinical relevance of six 
heterogeneous malignant cell states (Fig. 3G). Further 
analysis revealed that tumor ecosystems exhibited 
state dominance patterns, with 68% of patients 
showing >50% prevalence of a specific state (Fig. 3G, 
Fig. S18D), establishing cell state composition as a 
novel stratification biomarker. Thus, we now aim to 
explore their stratification capacity for prognosis. 
Validation through CIBERSORTx deconvolution 
across four independent cohorts (TCGA-KIRC [n = 
537], E-MTAB-1980 [n = 101], CheckMate [n = 121], 
SYSU-ICI+TKI [n = 60]) confirmed its prognostic 
stratification capacity (Fig. 3H). Samples were 
stratified into high and low groups based on optimal 
cutoff points for cell proportions corresponding to six 
MPs. Survival analysis revealed significant 
associations between elevated proportions of cycling, 
stress-responsive, and EMT states and poor 
prognosis, while increased proportions of metabolic, 
angiogenic, and antigen-presenting states were 
associated with a more favorable prognosis. Although 
certain cohorts showed limited significance (HRs 
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0.9-1.1), consistent trend directions suggested 
biological relevance beyond statistical power 
constraints.  

Our analysis presents a high-resolution atlas of 
malignant epithelial diversity in ccRCC, categorizing 
tumor cells into six distinct transcriptional MPs. These 
MPs not only represent unique functional and 
differentiation states but also demonstrate significant 
prognostic relevance, offering valuable insights into 
tumor heterogeneity and potential therapeutic 
strategies. 

Detection of Four Tumor Ecosystem Subtypes 

Building on our prior characterization of 
immune and tumor cell heterogeneity in ccRCC, we 
now integrate these components to map the complete 
tumor ecosystem. Through hierarchical clustering of 
six malignant cell states and four TIME subtypes, we 
identified four distinct ecosystems with functional 
interplay patterns (Fig. 4A). 

To delineate ecosystem-specific communication 
patterns, we mapped ligand-receptor networks across 
the subtypes. Ecosystem 1 couples 
angiogenic/stress-responsive tumor cells with 
CM4-IE subtypes, revealing vascular niche 
co-evolution. Ecosystem 2 features aggressive EMT 
tumor cells synergizing with CM3-ISM subtypes, 
suggesting myeloid-mediated immune evasion. 
Ecosystem 3 combines antigen-presenting tumor cells 
with CM1-IA subtypes. In this ecosystem, tumor cells 
engage with cytotoxic effectors (NKT_01_GNLY, 
CD8_16_CCL3), potentially enabling localized 
immune activation. Ecosystem 4 aligns 
metabolic/cycling tumor cells with CM2-II subtypes, 
indicating proliferative-metabolic adaptation. Tumor 
cells in ecosystem 4 are connected to NK and naïve T 
cells (CD8_02_IL7R) (Fig. S19). These distinct cellular 
interactions are fundamental to the organization of 
the ecosystem subtypes. 

Transcriptomic profiling revealed 
ecosystem-specific chemokine/cytokine networks 
that coordinate tumor-TIME crosstalk (Fig. S20A-B). 
In ecosystem 1, angiogenic/stress-responsive tumor 
cells interacted with endothelial cells through 
angiogenesis signaling molecules, such as 
VEGF-VEGFRs and CADM1-NECTIN3. Notably, in 
ecosystem 2, most chemokines tightly bind to DPP4, 
an enzyme known to negatively regulate lymphocyte 
trafficking, inhibit T cell migration, and impair tumor 
immunity by preserving the functional chemokine 
CXCL10 [59]. Ecosystems 3 and 4 demonstrated 
coordinated chemokine expression patterns between 
tumor and TIME cells, suggesting autocrine 
reinforcement loops (e.g., 
CXCL16-CXCR6/CXCL2-CXCR2 in ecosystem 3 and 

CXCL2/3/8-CXCR1/2 in ecosystem 4). These 
axis-specific signaling architectures underpin the 
functional specialization of the ecosystems. 

At the clinical level, we constructed four 
ecosystem-specific signatures based on the expression 
profiles of TIME subtypes, MPs, and specific 
ligand-receptor pairs (Table S9). Stratification of the 
TCGA, E-MTAB-1980, ICGC, CheckMate, JAVELIN 
and SYSUFAH cohorts revealed consistent group 
distributions, indicating the robustness of this 
categorization (Fig. S20C). Stratification of the TCGA 
cohort using ssGSEA identified four distinct 
prognostic groups. Kaplan-Meier analysis revealed 
significant survival disparities (Fig. 4B), with 
ecosystem 2 demonstrating the worst clinical 
outcomes (log-rank P < 0.001), while ecosystems 1 and 
3 exhibited a favorable prognosis. These findings 
collectively establish the clinical relevance of tumor 
ecosystem classification. The ecosystem-specific 
GSEA analysis revealed distinct enrichment profiles 
(Fig. S20D; Fig. S21). The ecosystem 1 signature was 
significantly and positively enriched in the 
angiogenesis phenotype. The ecosystem 2 signature 
showed significant positive enrichment in the 
Toll-like receptor and NOD-like receptor signaling 
pathways, indicating its suppression. The ecosystem 3 
signature was positively enriched in antigen 
presentation and adaptive immune response, and the 
ecosystem 4 signature exhibited significant positive 
enrichment in the reactive oxygen species pathway. 
GSEA using our custom immune gene sets 
successfully identified distinct biological states, 
offering mechanistic insights into their clinical 
relevance. 

At the spatial transcriptomic level, EMT-high 
tumor cells co-localized with M2 macrophages and 
CD8+ T cells, with a notable tendency to cluster at the 
edge of the tumor tissue in ecosystem 2. As the tumor 
stage progresses, the enrichment of EMT-high tumor 
cells and M2 macrophages becomes more pronounced 
(Fig. 4C; Fig. S22). Mechanistically, NicheNet analysis 
identified ecosystem 2-specific upregulation of 
EMT-inducing ligands (TGF-β1, IL-1β, OSM; Fig. 

S23A), indicating stromal-mediated EMT activation 
through IL-1β/TGF-β1 signaling. Metascape pathway 
enrichment analysis further highlighted the 
involvement of pathways related to cell migration, 
cytokine response, EMT, and immunosuppression 
(Fig. S23B-D). Together, our analyses suggest that 
EMT-high tumor cells interact with immune cells, 
particularly M2 macrophages, through cytokine 
signaling, which contributes to tumor progression 
and helps explain the poor survival outcomes 
observed in ecosystem 2 patients. 
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Figure 4. Four ecosystem subtypes in ccRCC and construction of 126 machine learning-based models. (A) Heatmap showing pairwise correlations of four cellular 

modules and six malignant meta-programs. Clustering identified four ecosystems across 43 tumors. (B) Kaplan-Meier survival curves showing overall survival of each TCGA-KIRC 

patient assigned to a single ecosystem. The table below shows the results of the pairwise tests between any two ecosystems. BH, Benjamini-Hochberg adjustment. (C) Spatial 

transcriptomic analysis shows that EMT-high tumor cells co-localize with M2 macrophages and tend to be located at the edge of tumor tissue. As the tumor stage progresses, the 

enrichment of EMT-high tumor cells and M2 macrophages becomes more pronounced. (D) Heatmap showing a total of 126 prediction models annotated with C-index. 

Histogram on the right shows the average C-index across five validating cohorts and the model size. Model size refers to the number of genes included in the models. The optimal 

model is marked in red. (E) Kaplan-Meier survival curves of overall survival according to the ISM-EMT-RS in TCGA-KIRC (n = 371), E-MTAB-1980 (n = 530), CheckMate cohorts 

(n = 311), and progression-free survival in JAVELIN-Renal-101 (n = 726), SYSU cohort (n = 60). Log-rank test was used. (F) 1-, 3-, and 5-year time-dependent C-index of 

ISM-EMT-RS across all datasets. (G) Coefficients of 15 mRNAs in the optimal model.  
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In summary, our analysis characterizes four 
distinct ccRCC tumor ecosystems, each defined by 
specific interactions between tumor cells and the 
TIME. These ecosystems exhibit unique activation 
patterns of signaling pathways that influence tumor 
behavior and immune dynamics. Notably, ecosystem 
2 is associated with poor prognosis, underscoring its 
role in immune evasion.  

Construction and Validation of 126 Machine 

Learning Models 

Our previous findings highlight the clinical 
relevance of tumor ecosystem classification as a 
predictive tool for patient stratification and potential 
therapeutic targeting. Given that samples from 
ecosystem 2 exhibited the worst survival outcomes, 
we established ISM-EMT-Sig using machine-learning 
framework described in method sections. We tested 
126 different prediction models on the TCGA-KIRC 
dataset, calculating the C-index for each model across 
various validation datasets (Fig. 4D). The HRs and 
their confidence intervals for 126 prognostic models 
across training set, internal validation set, and four 
distinct external validation sets were presented in the 
forest plot (Fig. S24A). The optimal model was a 
combination of Kang’s Model and Elastic Net (Enet) 
(α = 0.8) with 15 genes, yielding the highest average 
C-index (0.647), which showed a substantial C-index 
across all validation datasets. Ten-fold 
cross-validation was used to assess the robustness and 
generalizability of the optimal model (Fig. S24B-C). 
The optimal model demonstrated robust predictive 
performance, as evidenced by a mean coefficient of 
determination (R2) of 0.847. 

Risk stratification using these weighted 
transcripts (Table S10) consistently discriminated 
high-risk patients with worse OS/PFS across five 
cohorts (log-rank P < 0.05), including ICB-treated 
populations (CheckMate, JAVALIN_Renal_101, SYSU 
cohort) (Fig. 4E-F). Multivariate Cox regression 
demonstrated that ISM-EMT risk score (ISM-EMT-RS) 
remained statistically significant (all P < 0.05) after 
adjusting for available clinical factors, such as age; 
gender; disease stage; PD-L1 status (Fig. S25). This 
confirmed the ISM-EMT-RS as an independent OS 
predictor (TCGA-KIRC: HR = 2.06, 95% CI 1.60-2.65, P 
< 0.001; E-MTAB-1980: HR = 2.08, 95% CI 1.08-3.98, P 
< 0.001; CheckMate: HR = 1.13, 95% CI 0.96-1.34, P = 
0.137). For PFS, the ISM-EMT-RS showed some 
predictive value but did not reach statistical 
significance. 

Evaluation of the Optimal Machine Learning 

Model 

Receiver operating characteristic (ROC) analysis 

measured the discrimination of ISM-EMT-RS, with 1-, 
3-, and 5-year AUCs of 0.815, 0.814, and 0.805 in 
TCGA-KIRC; 0.813, 0.896, and 0.818 in E-MTAB-1980; 
0.573, 0.549, and 0.520 in CheckMate, respectively. 
1-year AUCs of SYSU cohort and JAVELIN cohort are 
0.607 and 0.555, respectively (Fig. 4G). Furthermore, 
we compared the performance of ISM-EMT-RS with 
other clinical variables in predicting prognosis. As 
depicted in Fig. S26, ISM-EMT-RS exhibited distinctly 
superior accuracy compared to other variables, 
including age, gender, pathological grade, T, N, M, 
and AJCC stage (except for the comparison between 
ISM-EMT-RS and AJCC stage in the 
TCGA-KIRC-training and TCGA-KIRC-total cohort). 
These findings collectively suggest that the 
ISM-EMT-RS has stable and robust prognostic 
performance in multiple independent cohorts. AJCC 
stage is a commonly used prognostic tool for the 
clinical management of ccRCC, and multivariate Cox 
regression analysis demonstrated that AJCC stage 
was statistically significant across multiple cohorts. 
Thus, combining the ISM-EMT-RS with AJCC stage 
may further improve the predictive ability of our 
model.  

In summary, we established the ISM-EMT-RS as 
a robust, independent prognostic tool for ccRCC, with 
superior predictive power across multiple cohorts. 
The optimal machine learning model, combining 
Kang’s Model with ENet, provides reliable risk 
stratification for predicting overall survival. 

Expressive Validation of Prognostic 

Biomarkers at mRNA and Protein Resolution 

We selected six genes from ISM-EMT-Sig for 
downstream experimental validation. Specifically, we 
chose two genes with the highest positive coefficients 
and two with the highest negative coefficients, as 
these are likely to have the most significant impact on 
our model. Additionally, we included two genes with 
median coefficients to represent a range of moderate 
effects. qPCR revealed significant upregulation of 
FKBP10 and IQGAP3, and downregulation of 
DNASE1L3, SHROOM3, and DPEP1 in ccRCC tumors 
(P < 0.05) (Fig. 5A). Then the gene with the most 
significant differential expression within each of the 
three groups was selected for further protein 
expression analysis. WB results showed that FKBP10 
was upregulated, while DNASE1L3 and DPEP1 were 
downregulated in ccRCC tissues (Fig. 5B).  

IHC staining showed distinct expression 
patterns of DNASE1L3, DPEP1, and FKBP10 across 
normal, early, and advanced stages. DNASE1L3 and 
DPEP1 decreased progressively, while FKBP10 was 
elevated mainly in advanced stages (Fig. 5C). 
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Figure 5. Expression and functional analysis of FKBP10, DNASE1L3, and DPEP1 in ccRCC. (A) mRNA expression levels of six candidate genes (FKBP10, IQGAP3, 

DNASE1L3, SCD5, SHROOM3, DPEP1) in ccRCC tumors versus paired normal adjacent tissues (n = 20 matched pairs). Data were quantified by qRT-PCR and analyzed using 

two-tailed paired Student’s t-tests. (B) Representative western blot analyses of FKBP10, DNASE1L3 and DPEP1 protein expression in tumor/normal tissue pairs (n = 12 matched 

pairs). (C) Immunohistochemical staining of FKBP10, DNASE1L3 and DPEP1 across ccRCC clinical stages. (D, E) Colony formation (D) and CCK-8 proliferation assays (E) in 

786-O and 769-P cells following FKBP10 knockdown (siFKBP10) or overexpression (OE) of DNASE1L3/DPEP1 (n = 3 independent experiments, mean ± SD). (F) Transwell 

migration (upper chamber without Matrigel) and invasion (with Matrigel coating) assays under indicated treatments (n = 3 independent experiments). (G) Subcutaneous xenograft 

growth curves (left) and final tumor weights (right) in mice (n = 5 per group) injected with: 1) Vector control, 2) FKBP10-knockdown, 3) DNASE1L3-overexpressing, or 4) 

DPEP1-overexpressing 786-O cells. Data were analyzed by mixed-effects model (growth curves) and two-tailed unpaired Student’s t-tests (tumor weights). Data are presented 

as mean ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Functional Validation of 

FKBP10/DNASE1L3/DPEP1 

To better understand the roles of FKBP10, 
DNASE1L3, and DPEP1 in RCC progression, we 
conducted a series of functional assays. Colony 
formation and CCK8 assays demonstrated that 
silencing FKBP10 and overexpressing 
DNASE1L3/DPEP1 significantly suppressed the 
proliferation of 786-O and 769-P cells (all P < 0.05) 
(Fig. 5D-E). Quantitative Transwell analysis 
demonstrated FKBP10 silencing reduced invasion by 
54% (P < 0.05) and migration by 58% (P < 0.05), while 
DNASE1L3/DPEP1 overexpression attenuated 
invasion by 62%/39% and migration by 70%/46% 
compared to controls (P < 0.05) (Fig. 5F). 

In vivo validation through subcutaneous 
xenograft models revealed phenotype concordance: 
DNASE1L3/DPEP1-overexpressing tumors showed a 
49%/76% volume reduction (P < 0.001), while 
FKBP10-silenced models exhibited an 81% growth 
inhibition (P < 0.001) at endpoint compared to 
controls (Fig. 5G). These findings support FKBP10 as 
a metastasis driver and DNASE1L3/DPEP1 as tumor 
suppressors in the pathogenesis of ccRCC. 

FKBP10 as a Biomarker in Immunotherapy 

Cox regression analysis across TCGA-KIRC, 
GSE167573, E-MTAB-1980, and ICGC-EU datasets 
confirmed FKBP10 as a risk factor for ccRCC, while 
DPEP1 and DNASE1L3 exhibited protective roles. 
GSEA of hallmark pathways identified EMT, KRAS 
signaling, and glycolysis as top enriched pathways in 
FKBP10-high tumors (Fig. S27). 

Further survival analysis across multiple 
immunotherapeutic cohorts indicated FKBP10 
expression as a pan-immunotherapy biomarker. 
Compared to DPEP1 and DNASE1L3, FKBP10 
expression consistently distinguished 
immunotherapeutic efficacy across several cohorts, 
including CheckMate cohort treated with anti-PD-1 
therapy (log-rank, OS: P = 0.014; PFS: P = 0.0062), 
CheckMate + JAVELIN cohort (log-rank, P < 0.0001); 
Kim cohort 2019 treated with anti-PD-1/PD-L1 
therapy (log-rank, P = 0.05), IMvigor210 cohort 2018 
treated with anti-PD-L1 therapy (log-rank, P = 
0.0017), VanAllen cohort 2015 treated with 
anti-CTLA-4 therapy (log-rank, P = 0.00047), and 
SYSUFAH cohort treated with anti-PD-1 (log-rank, P 
= 0.024) (Fig. 6A, Fig. S28).  

Multivariable Cox regression analysis revealed 
that high FKBP10 expression is an independent risk 
factor for ccRCC patients across multiple cohorts, 
including TCGA, E-MTAB-1980, CheckMate, 
JAVELIN, and SYSUFAH (Fig. S29A). Subgroup 

analysis in our multicenter SYSUFAH cohort, which 
received different immunotherapy regimens, further 
supported this finding (Fig. S29B). Specifically, 
FKBP10 was identified as a significant risk factor in 
the Axitinib plus Toripalimab treatment group (n = 
49). In contrast, no significant association (P > 0.05) 
was observed in the Lenvatinib plus Pembrolizumab 
(n = 4) or Axitinib plus Pembrolizumab (n = 8) groups, 
likely due to the limited sample sizes. 

The consistent predictive power of FKBP10 
across these cohorts suggests its potential as a 
pan-immunotherapy biomarker. This prompted 
further investigation into the immunomodulatory role 
of FKBP10. 

FKBP10 Promotes M2 Polarization and EMT 

in RCC 

To investigate the mechanistic role of FKBP10 in 
TME reprograming within ccRCC, we performed 
integrative scRNA-seq analyses across three 
independent validation cohorts (n = 429,854 cells). 
Notably, FKBP10_High tumors exhibited a significant 
depletion of total macrophage populations (P < 0.001, 
χ² test; Fig. S29C), accompanied by distinct TIME 
remodeling. Specifically, we observed marked 
reductions in anti-tumorigenic TIME subtypes and 
increases in the immunosuppressive CM3-ISM 
subtype in FKBP10_High tumors (Fig. S29D-E). 
Additionally, FKBP10 showed a significant positive 
correlation with the M2 polarization-promoting 
cytokine CXCL8 (Fig. S29F).  

Pseudotime analysis revealed bifurcating 
macrophage differentiation trajectories, identifying 
three distinct cellular states (States 0-2). State 1 
macrophages showed enrichment for M1 polarization 
markers (IRF5, IL12B) and pro-inflammatory TNF-α 
signaling pathways. State 2 cells were characterized 
by M2-associated markers (CD206, ARG1). 
FKBP10_High tumors exhibited a preferential 
accumulation of M2-polarized macrophages (P < 
0.001; Fig. 6B). 

Complementary heatmap analysis of 
pseudotime-dependent gene expression revealed four 
distinct transcriptional modules (Modules I-IV) along 
the macrophage differentiation continuum (Fig. 6C). 
Through kernel density estimation of M0/M1/M2 
phenotypic distributions, we established three 
developmental phases: Phase 1 (early differentiation) 
predominated by M0 macrophages enriched in 
immune surveillance pathways (innate immune 
response: P = 4.42×10-6; macrophage 
chemotaxis/migration: P = 1.42×10-3); Phase 2 
(intermediate) dominated by M2-polarized cells 
showing marked activation of immunosuppressive 
signaling (IL-4/IL-13: P = 2.88×10-16; IL-10: P = 
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3.93×10-22; IL-17: P = 6.77×10-17); and Phase 3 
(terminal) enriched for M1-like macrophages 
upregulating pro-inflammatory mediators (IFN-γ 
response: P = 1.43×10-12; cytokine activity: P = 
1.88×10-5). Pseudotime analysis demonstrated 
progressive activation of canonical M2 markers in 
FKBP10_High specimens, with MRC1 expression 

increasing from Phase 1 to Phase 3 (Fig. 6D). 
Conversely, FKBP10_High macrophages exhibited 
significant suppression of M1-associated effectors 
(CD86, CCL5, CXCL9, and CXCL12), indicating 
FKBP10’s role in bidirectional regulation of 
macrophage polarization. 

 

 
Figure 6. FKBP10 shapes an immunosuppressive microenvironment and synergizes with anti-PD-1 therapy. (A) Kaplan-Meier analysis of immunotherapy 

response (anti-PD-1: CheckMate cohort, n = 181; anti-PD-L1: IMvigor210, n = 348; anti-PD-1/PD-L1: Kim cohort, n = 27). Log-rank P values shown. (B) Monocle2-based 

pseudotime trajectories (n = 7,476 macrophages from 71 ccRCC samples) include: (Top) Phenotype distribution (M0/M1/M2) with cell density estimation. Stacked bars show 

phenotype proportions in FKBP10-high versus FKBP10-low groups (χ² test, ***, P < 0.001). (Bottom left) Two distinct differentiation states (State 1/2) identified by DDRTree 

dimensional reduction. Stacked bars show state proportions across groups (χ² test, ***, P < 0.001). (Bottom right) State-specific pathway activities calculated by AddModuleScore. 

Color scale: z-scored enrichment scores. (C) Heatmap of 1,000 differentially expressed genes (|log2FC| > 1, FDR < 0.05 by DESeq2) across pseudotime continuum (columns: 

7,476 cells from 62 patients). Rows show z-score normalized expression. (Top) cell density estimation of M0/M1/M2 macrophage distribution along pseudotime. Dashed lines 

indicate polarization checkpoints. (Right) Top enriched pathways per gene module (FDR < 0.01). (D) Dynamic expression patterns of macrophage polarization markers along 

pseudotime. (E-F) Representative IHC staining (10×, 50×) of FKBP10 across AJCC stages (n = 5 per stage). Co-staining of macrophage markers CD206 (M2) and CD86 (M1) with 

EMT markers (N-cadherin, vimentin, and E-cadherin). (G) In vivo therapeutic efficacy in Renca-bearing Balb/c mice (n = 5 per group): Combination therapy (siFKBP10 + anti-PD-1) 

significantly reduced tumor weight and volume (***P < 0.001, two-way ANOVA) compared to monotherapies. siNC, scrambled control; i.t., intratumoral; i.p., intraperitoneal. *, 

P < 0.05; **, P < 0.01; ***, P < 0.001. All data represent mean ± SD from independent experiments unless specified. Statistical analyses performed using Benjamini-Hochberg 

correction for omics data. 
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We further analyzed immune cell infiltration, 
stratified by FKBP10 expression levels, in the 
E-MTAB-1980, CheckMate, TCGA-KIRC, and 
JAVELIN cohorts using multiple algorithms (Fig. 

S30-31). The results showed that high FKBP10 
expression was associated with a significant decrease 
in T cells. In contrast, there was an increase in 
macrophages, particularly M2 macrophages, and 
CAFs. ESTIMATE analysis revealed that the high 
FKBP10 group exhibited a significantly decreased 
immune score, and an increased stromal score. In 
summary, bioinformatic analysis suggests that 
FKBP10 contributes to an immunosuppressive 
microenvironment through macrophage 
reprogramming and matrix remodeling. 

Consistent with the pro-metastatic role of EMT, 
IHC profiling revealed significant co-upregulation of 
mesenchymal markers N-cadherin (2.51-fold increase, 
P < 0.001) and Vimentin (4.69-fold, P < 0.001) in 
FKBP10_High tumors, concomitant with a collapse in 
epithelial marker (E-cadherin: 0.22-fold decrease, P < 
0.001; Fig. 6E). This reciprocal regulation pattern 
supports FKBP10 as a potent EMT inducer in ccRCC. 
Multispectral immunofluorescence analysis 
quantitatively demonstrated the spatial enrichment of 
CD206+ M2 macrophages in FKBP10_High tumor 
stroma (mean intensity: 148.92 vs 33.69 in Low, P < 
0.001; Fig. 6F). Furthermore, CD206+ clusters 
exhibited direct spatial adjacency to EMT+ tumor cells 
in the previous spatial transcriptomics analysis, 
suggesting paracrine crosstalk between 
FKBP10-reprogrammed M2 macrophages and 
progressing tumor cells. Our findings highlight the 
role of FKBP10 in creating a pro-metastatic niche 
through macrophage polarization and EMT. 

Combination Therapy of siFKBP10 and 

Anti-PD1 Shows Synergistic Effects in Cancer 

Treatment 

Based on our findings that FKBP10 promotes M2 
macrophage polarization and EMT in RCC, we next 
investigated whether targeting FKBP10 could enhance 
the efficacy of ICB. To this end, we established a 
syngeneic Renca renal carcinoma model in BALB/c 
mice (n = 5 per group) to assess the therapeutic 
potential of FKBP10 inhibition in combination with 
anti-PD-1 therapy (Fig. 6G). On days 9, 11, and 13, the 
mice received intra-tumoral injections of VNP 
(siNC/siFKBP10). On days 14 and 15, they were 
administered intraperitoneal injections of anti-PD-1. 
Tumor weight analysis revealed a marked reduction 
in tumor burden in the VNPsiFKBP10 + anti-PD-1 
group compared to the control groups (VNPsiNC + 
IgG, VNPsiFKBP10 + IgG, and VNPsiNC + anti-PD-1). 
Consistently, longitudinal monitoring of tumor 

volume demonstrated significantly slower tumor 
growth in the combination group, indicating 
enhanced antitumor efficacy. Among all treatment 
arms, the VNPsiFKBP10 + anti-PD-1 group exhibited 
the most pronounced tumor suppression, suggesting 
a synergistic interaction between FKBP10 silencing 
and PD-1 blockade. Collectively, these results 
demonstrate that FKBP10 inhibition sensitizes tumors 
to ICB, supporting the therapeutic potential of 
combining siFKBP10 with anti-PD-1 treatment to 
improve clinical outcomes in renal cell carcinoma. 

CXCL8 is the Dominant FKBP10-Regulated 

Chemokine 

To explore the paracrine crosstalk between 
macrophages and tumor cells, we performed cytokine 
profiling in serum-starved RCC cells. Quantitative 
densitometry revealed significant upregulation of 
IL-1rα, IL16, CCL5 and CXCL8 compared to vehicle 
controls (P < 0.001) (Fig. 7A). Consistent with protein 
findings, qPCR demonstrated parallel mRNA 
induction (IL16, CCL5, CXCL8; all P < 0.001; Fig. 7B). 

Baseline characterization of RCC cells revealed 
that 786-O cells exhibited low endogenous FKBP10 
expression levels versus OS-RC-2 cells. Notably, 
CXCL8 secretion in OS-RC-2 conditioned media 
surpassed 786-O levels (P < 0.001), whereas IL-16 and 
CCL5 showed no inter-cellline disparity (P > 0.05) 
(Fig. 7C). These findings established CXCL8 as the 
dominant FKBP10-regulated chemokine in RCC. 

FKBP10 Modulates Tumor Growth and 

Immune Microenvironment Through 

CXCL8-CXCR1/2 Axis 

Given that CXCL8 could induce M2 polarization 
[60], we established a macrophage-tumor co-culture 
system using Transwell assays to explore the role of 
CXCL8 in M2 polarization. Supplementation with 
CXCL8 significantly enhanced macrophage-mediated 
invasion, with invasion indices increasing 2-fold in 
OSRC2 cells and 3-fold in 786-O cells compared to 
baseline (Fig. 7D). This suggests that CXCL8 is a key 
factor in FKBP10-driven cancer progression.  

In a subcutaneous xenograft model, 
overexpression of FKBP10 (oeFKBP10 + IgG) 
significantly promoted tumor growth, as indicated by 
larger tumor volumes and weights compared to the 
control group (Vector + IgG) (Fig. 7E-G). Flow 
cytometry of tumor tissues revealed that FKBP10 
overexpression shifted the immune 
microenvironment toward immunosuppression, with 
reduced M1 macrophages and increased M2 
macrophages and MDSCs. Importantly, this effect 
was dependent on the CXCL8-CXCR1/2 signaling 
pathway. Inhibition of this pathway using 
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anti-CXCL8 neutralizing antibodies or CXCR1/2 
inhibitors (Reparixin) significantly slowed tumor 
growth and reversed the immunosuppressive cell 
profile in the oeFKBP10 group (Fig. 7H). 

Conversely, knockdown of FKBP10 
(shFKBP10#1 and shFKBP10#2) significantly 
suppressed tumor growth compared to controls 
(shNC) (Fig. 7I-K). FKBP10 depletion resulted in a 
more immunostimulatory microenvironment, with 
increased M1 macrophages and decreased M2 
macrophages and MDSCs. Importantly, exogenous 
CXCL8 administration reversed the effects of FKBP10 
knockdown, restoring tumor growth and promoting 
an immunosuppressive microenvironment (Fig. 7L). 
This underscores CXCL8 as a critical mediator of 
FKBP10’s function in vivo. 

FKBP10 Upregulates CXCL8 Through 

MEK/ERK Signaling 

To identify the signaling pathway responsible 
for FKBP10-driven CXCL8 induction, we conducted 
pharmacological inhibition experiments in 786-O 
cells. After 24 hours of serum starvation, the cells 
were pretreated with clinically relevant inhibitors 
targeting MEK (binimetinib, 5 μM), JNK (SP600125, 10 
μM), and PI3K (LY294002, 20 μM) before FKBP10 
stimulation. FKBP10 treatment significantly increased 
CXCL8 mRNA expression. Notably, binimetinib, a 
MEK inhibitor, strongly reduced FKBP10-induced 
CXCL8 expression, while the JNK and PI3K inhibitors 
had no effect (Fig. 8A-B). Further experiments 
showed that FKBP10 knockdown reduced 
phospho-MEK, phospho-ERK, and CXCL8 expression 
without affecting total MEK/ERK levels (Fig. 8C). 
Conversely, FKBP10 overexpression increased 
phospho-MEK, phospho-ERK, and CXCL8 
expression, again without altering total MEK/ERK 
levels (Fig. 8D). These findings confirm that FKBP10 
upregulates CXCL8 expression through the 
MEK/ERK signaling pathway in RCC cells. 

ELF3 Drives FKBP10-Mediated 

Transcriptional Activation of CXCL8 

Integrative analysis of ENCODE ChIP-seq 
datasets identified 135 transcription factors (TFs) 
using MACS2 peak calling (q < 0.01). These TFs 
demonstrate coordinated chromatin binding at the 
CXCL8 locus, including active promoter regions 
(H3K4me3+/H3K27ac+) and distal enhancers 
(H3K4me1+) (Fig. S32A). Intersectional analysis with 
TCGA-KIRC differential expression profiles 
(|log2FC| > 1, FDR < 0.05) highlighted 18 clinically 
relevant TFs (Fig. S32B). Among these, only ELF3, 
ZNF331, and ATF3 showed significant co-expression 
with CXCL8 (P < 0.001) (Fig. S32C). Computational 

deconvolution using JASPAR confirmed that ELF3 
binds to the CXCL8 promoter (-2,000 bp to +100 bp 
around TSS) with highly conserved motifs (relative 
score > 0.85/1.0) (Fig. S32D). 

Western blot showed that FKBP10 knockdown 
reduced both ELF3 and CXCL8 protein levels (Fig. 

8E). Rescue experiments showed that FKBP10 
overexpression significantly increased CXCL8 
expression. However, this effect was substantially 
diminished when ELF3 was also knocked down (Fig. 

8F), indicating that FKBP10’s induction of CXCL8 is 
ELF3-dependent. Conversely, FKBP10 knockdown 
led to a marked decrease in CXCL8 levels, but this 
reduction was reversed by ELF3 overexpression (Fig. 

8G). Together, these results demonstrate that ELF3 is 
crucial for FKBP10-mediated CXCL8 expression. 
RNA-seq profiling (siFKBP10 vs. siNC, n = 3 
biological replicates) confirmed the downregulation 
of the ELF3-CXCL8 axis, EMT master regulators, and 
M2 polarization effectors (Fig. 8H) ChIP-seq density 
and heatmaps showing FKBP10-associated chromatin 

occupancy around transcription start sites (±3 kb) in 

WT and FKBP10-knockdown (shFKBP10) cells. 
Compared to WT, FKBP10 depletion markedly 
reduced enrichment at TSS regions, indicating a loss 
of FKBP10-dependent promoter binding (Fig. 8I). 
Peak plots revealed a reduction in ELF3 binding to the 
CXCL8 promoter region in shFKBP10 cells compared 
to WT cells (Fig. 8J). Taken as a whole, FKBP10 
activates the MEK/ERK/ELF3 signaling cascade to 
transcriptionally upregulate CXCL8, which is secreted 
into the TME. This paracrine CXCL8 drives M2 
macrophage polarization, thereby fostering an 
immunosuppressive niche that accelerates tumor 
immune evasion and metastatic outgrowth (Fig. 8K). 

Synergistic Antitumor Effects of siELF3 and 

Anti-PD-1 Therapy 

We investigated whether targeting ELF3 could 
enhance the effectiveness of ICB therapy. Using a 
syngeneic Renca renal carcinoma model in BALB/c 
mice (n = 5 per group), we tested the combination of 
ELF3 inhibition with anti-PD-1 therapy (Fig. 8L). 

The combination of VNPsiELF3 and anti-PD-1 
led to a significant reduction in tumor weight 
compared to the control groups (VNPsiNC + IgG, 
VNPsiELF3 + IgG, and VNPsiNC + anti-PD-1) (Fig. 

8M). Tumor volume measurements over time showed 
slower tumor growth in the combination therapy 
group (Fig. 8N). The VNPsiELF3 + anti-PD-1 group 
showed the most significant tumor suppression. 
These results support the potential of combining 
siELF3 with anti-PD-1 therapy as a promising strategy 
for improving treatment outcomes in RCC. 
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Figure 7. FKBP10 modulates tumor growth and immune microenvironment through the CXCL8 signaling axis. (A, B) Conditioned media from serum-starved 

786-O cells treated with 1 μg/ml recombinant FKBP10 for 24 hours were analyzed using a human cytokine array (A). Corresponding mRNA levels of IL16, CCL5, and CXCL8 

were quantified by qRT-PCR (B). (C) Western blot revealed higher endogenous FKBP10 expression in OS-RC-2 compared to 786-O cells (top). ELISA quantification showed 

significantly elevated CXCL8 (***, P < 0.001), but not IL16 or CCL5, in OS-RC-2 conditioned media (bottom). CM: conditioned media. (D) Transwell invasion assays 

demonstrating CXCL8-dependent macrophage-mediated invasion. Microscopic images and cumulative number of invaded RCC cells on the bottom surfaces of filters. (E-G) 

Representative images (E), tumor volume (F) and tumor weight (G) of excised tumors at the endpoint. Mice (n = 5 per group) were subcutaneously injected with cancer cells 

stably transduced with empty vector (Vector) or FKBP10-overexpressing vector (oeFKBP10). Treatments included isotype control IgG, anti-CXCL8 neutralizing antibodies, or 

the CXCR1/2 inhibitor Reparixin. Data are presented as mean ± SD. Statistical significance was determined by two-way ANOVA for tumor volume and one-way ANOVA with 

Tukey’s test for tumor weight. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (H) Flow cytometry analysis of tumor-infiltrating immune cells. Bar graphs show the proportions of M1 

macrophages (CD86+), M2 macrophages (CD206+), and MDSCs (CD11b+Gr-1+). Data are mean ± SD of n = 5 biological replicates. *, P < 0.05; **, P < 0.01; ***, P < 0.001 

(one-way ANOVA with Tukey’s test). (I-K) Representative images (I), tumor growth curves (J) and tumor weight (K) of excised tumors at the endpoint. Mice (n = 5 per group) 

were subcutaneously injected with cancer cells stably transduced with a non-targeting control shRNA (shNC) or one of two distinct FKBP10-targeting shRNAs (shFKBP10#1, 

shFKBP10#2). Mice bearing shFKBP10 tumors received intratumoral injections of recombinant CXCL8. Data are mean ± SD. Statistical analysis as in E-G. (L) Flow cytometry 

analysis of tumor-infiltrating immune cells. Bar graphs show the proportions of M1 macrophages (CD86+), M2 macrophages (CD206+), and MDSCs (CD11b+Gr-1+). Data are 

mean ± SD. Statistical analysis as in H. 
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Figure 8. FKBP10 upregulates CXCL8 expression via activation of the MEK/ERK/ELF3 signaling axis. (A, B) Pretreatment of 786-O cells with Binimetinib (ERK 

inhibitor) prior to FKBP10 treatment significantly attenuated CXCL8 mRNA (A) and secreted protein (B) levels, as determined by qRT-PCR and ELISA, respectively. SP600125, 

a specific JNK inhibitor; LY294002, a specific PI-3K inhibitor. (C) Representative western blots showing MEK/ERK phosphorylation status in FKBP10-knockdown (siFKBP10), 

wild-type (WT), and scrambled control (siNC) 786-O cells. p-MEK, phosphorylated MEK; p-ERK, phosphorylated ERK. (D) Representative western blots showing MEK/ERK 

phosphorylation status in FKBP10-overexpression (oeFKBP10), wild-type (WT), and scrambled control (Vector) 786-O cells. (E) Western blot validation of ELF3 and CXCL8 

downregulation in FKBP10-knockdown cells. (F) Western blot analysis showing that the downregulation of CXCL8 induced by FKBP10 knockdown (shFKBP10) was rescued by 

ELF3 overexpression (oeELF3). (G) The upregulation of CXCL8 induced by FKBP10 overexpression (oeFKBP10) was attenuated by ELF3 knockdown (shELF3). (H) Volcano plot 

of RNA-seq data (siFKBP10 versus siNC, n = 3) highlighting ELF3, CXCL8 and EMT/M2 polarization genes (|log2FC| > 1.5, FDR < 0.01). (I) Heatmap depicting the normalized 

ChIP-seq signal intensity of ELF3 binding peaks in regions centered on summits from shNC and shFKBP10 cells. The color scale indicates ChIP-seq enrichment, with blue 

representing high intensity and red representing low intensity. The experiment was performed with two biological replicates per condition. (J) Peak plots showed a reduction in 

ELF3 binding to the CXCL8 promoter region in shFKBP10 cells compared to WT cells. (K) Proposed mechanism of FKBP10-MEK-ERK-ELF3-CXCL8-M2 polarization axis in TME 

remodeling. (L-N) In vivo therapeutic efficacy in Renca-bearing Balb/c mice (n = 5 per group): Combination therapy (siELF3 + anti-PD-1) significantly reduced tumor volume (M) 

and weight (N) compared to monotherapies. siNC, non-targeting control. Data are presented as mean ± SD. Statistical significance for tumor volume was determined by two-way 

ANOVA; other comparisons were analyzed by one-way ANOVA. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Discussion 

This study systematically identified four TIME 
subtypes and six tumor cell states with distinct 
prognostic values in ccRCC by analyzing over one 
million single cells across ten cohorts. Additionally, 
through cell communication analysis, we delineated 
four distinct tumor ecosystems. We constructed a 
robust 126-gene prognostic model based on the 
ecosystem with the poorest prognosis. 
Mechanistically, we identified FKBP10 as a core 
pathogenic gene and revealed a novel mechanism by 
which it upregulates CXCL8 secretion through the 
MEK/ERK/ELF3 signaling axis, thereby remodeling 
the immunosuppressive microenvironment and 
promoting tumor progression. 

The present study has provided several 
significant findings. First, our integrative analysis 
delineates four archetypes of TIME heterogeneity in 
ccRCC, revealing clinically associated biological 
features. The correction of batch effects and the 
inclusion of abundant non-malignant cell populations 
allowed us to uncover these previously unreported 
features [13, 14, 16-19, 21, 33]. The CM1-IA subtype 
displayed an immunologically active phenotype 
linked to improved survival and a favorable response 
to the mTOR inhibitor everolimus. However, its 
limited predictive value for PD-1 blockade 
(nivolumab) outcomes likely reflects fundamental 
differences in therapeutic mechanisms. Everolimus 
primarily targets tumor-intrinsic pathways by 
inhibiting angiogenesis [61]. In contrast, nivolumab’s 
efficacy depends on the dynamic equilibrium within 
the TIME. Its clinical effectiveness is concurrently 
modulated by pre-existing effector T cells, T cell 
exhaustion [62], immunosuppressive cell infiltration, 
antigen presentation capacity, etc. [63]. These 
coexisting regulatory networks may collectively 
diminish the prognostic significance of CM1-IA 
signatures in anti-PD-1 therapy. Contrastingly, the 
CM2-II subtype exhibited prominent innate immune 
activity. Since innate immune responses primarily 
modulate adaptive immunity rather than exert direct 
cytotoxic effects [64, 65], this may explain its weak 
association with prognosis and immunotherapy 
response in ccRCC. The CM3-ISM subtype, 
characterized by dense myeloid infiltration, was 
associated with poor prognosis and resistance to both 
mTOR inhibitors and PD-1 blockade, consistent with 
previous studies [8, 9]. Notably, our comprehensive 
analysis revealed mechanisms of tumor progression 
and treatment resistance. In CM3-ISM, most 
macrophages express high levels of macrophage 
polarization regulators (e.g., APOC1, SELENOP) that 
have been shown to promote M2 polarization of 

macrophages and play a tumor-promoting role by 
regulating cancer cell proliferation, metastasis, and 
angiogenesis [66-68]. Other macrophages 
overexpressing CCL3/CCL4 have been reported to 
augment tumor metastasis by promoting 
neovascularization, recruiting Tregs, and recruiting 
pro-tumorigenic macrophages via CCL3/CCL4-CCR5 
axis [69, 70]. The CM4-IE subtype, composed 
primarily of fibroblasts and endothelial cells, 
influences angiogenesis, cell adhesion, and migration. 
These cells have strong immunomodulatory 
capacities that contribute to immune evasion [62, 71]. 
The CM4-IE signature and its associated 
improvement in immunotherapy response may be 
attributed to a spatially coordinated TME, where ICB 
has the potential to reverse T cell dysfunction by 
modulating cell-cell interactions [17, 72]. 
Consequently, the CM4-IE signature may represent a 
contextual biomarker indicative of a TME susceptible 
to immune reactivation. Overall, this work provides 
the first comprehensive delineation of TIME 
heterogeneity in ccRCC, paralleling similar immune 
landscapes observed in liver cancer [39]. This work 
advances precision medicine and immuno-oncology 
by helping identify patients who are responsive to 
immunotherapy. It provides targets and pathways for 
developing combination therapies to overcome future 
treatment resistance. 

Second, we deciphered the intra-tumor 
expression heterogeneity of malignant epithelial cells 
and categorized ccRCC tumor cells into six states. A 
previous study has reported six conserved MPs that 
distinguish ccRCC tumor cell functions, including 
stress response, proximal tubule, EMT, cell death, 
MHC-II, and cell cycle [32]. However, it only included 
ten samples, which may not adequately represent the 
full spectrum of ccRCC heterogeneity. These MPs 
align with those found in our analysis, except for 
proximal tubule, cell death, and MHC-II. The 
proximal tubule meta-program shared transcriptional 
features with our metabolic meta-program, while the 
MHC-II meta-program was similar to our 
antigen-presenting meta-program. Our analysis, 
which includes a larger sample size and diverse 
tumor cell populations, revealed a previously 
unreported angiogenic state. Patients in the 
angiogenic state demonstrated better responses to 
VEGF-targeting TKIs, revealing pathway-specific 
therapeutic efficacy [73]. Classifying ccRCC tumor 
cells in the angiogenic state could be invaluable for 
identifying patients who are sensitive to TKI therapy. 
EMT tumor cells in ccRCC tended to localize to the 
tumor-normal interface, which is the leading and 
migratory edge of a tumor, potentially enabling the 
collective migration and invasion of tumor cells. High 
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EMT scores in tumor cells correlate with increased 
metastatic potential, assisting in the identification of 
patients at higher risk for advanced disease. Given 
that immunotherapy is often reserved for 
advanced-stage ccRCC, this finding indirectly helps in 
selecting patients who may benefit from 
immunotherapeutic approaches. As for tumor cells in 
the metabolic and antigen-presenting state, our 
analysis indicated that these cells retained PT cell 
characteristics and antigen-presenting functions, 
suggesting a lower grade of malignancy and a more 
favorable prognosis. Moreover, the transcriptional 
features shared between cells in the metabolic state 
and the PT signature support the hypothesis that PT 
cells are a potential cell of origin for ccRCC [17]. Our 
comprehensive scRNA-seq analysis, augmented by 
deconvoluted bulk RNA-seq, connects ITH with 
clinical heterogeneity. This connection is vital for 
understanding the progression and treatment 
response of ccRCC and for guiding the development 
of personalized therapeutic strategies. 

Third, this study presents a tumor ecosystem 
framework that enhances our understanding of 
ccRCC progression and mechanisms of resistance to 
immunotherapy, enabling more accurate predictions 
of immunotherapy efficacy. Unlike traditional scoring 
systems that focus on the abundance of a single cell 
type, such as CD8+ T cells, our ecosystem-based 
classification offers distinct advantages. Single-cell 
infiltration scores fail to differentiate between 
functionally distinct cell states (e.g., exhausted vs. 
effector T cells) or capture the interactions among cells 
[74]. For instance, a tumor with high CD8+ T cell 
infiltration and concurrent M2 macrophage 
enrichment (e.g., ecosystem 2) may exhibit a more 
severe immunosuppressive environment and worse 
prognosis compared to a tumor with lower infiltration 
but no such inhibitory factors (e.g., ecosystem 1). Our 
classification method integrates cell types, functional 
states, and their interactions, providing a more 
comprehensive view of the TME. This approach 
explains why ecosystem-based classification provides 
more accurate prognostic predictions. The four 
ecosystems identified in this study illuminate the 
variable clinical course of ccRCC. Specifically, 
myeloid immunosuppressive ecosystems, which 
correlate with poor prognosis, illustrate tumor 
immune evasion mechanisms: tumor cells promote 
invasion through EMT and suppress immune 
responses by recruiting MDSCs and polarizing M2 
macrophages [75, 76]. These two mechanisms work 
synergistically to create a formidable barrier to 
immunotherapy, explaining primary resistance to 
ICB. Our findings suggest that targeting specific 
components of these ecosystems, such as EMT or M2 

macrophages, could improve treatment strategies. By 
shifting the perspective from a static “cell list” to a 
dynamic, interactive “ecosystem”, we provide a 
theoretical foundation for developing more precise 
prognostic models and combination therapies in 
ccRCC. 

Fourth, our study not only identified FKBP10 as 
an oncogene in ccRCC, but also further revealed its 
novel downstream mechanism. FKBP10 has been 
found to be overexpressed in several cancers, 
including colorectal cancer, KRAS-mutant lung 
adenocarcinoma, renal cell carcinoma, and gastric 
cancer, and the knockdown of FKBP10 is sufficient to 
inhibit the proliferation of tumor cells [77-80]. 
Consistent with these findings, our study shows that 
FKBP10 is highly expressed in ccRCC tissues, and its 
knockdown suppresses the malignant features of 
ccRCC cells both in vitro and in vivo. Interestingly, 
while the immunological role of FKBP10 in ccRCC has 
been little explored, we reveal its significant role in 
CXCL8 secretion via MEK/ERK activation, a 
well-characterized MAPK pathway involved in cell 
proliferation and survival [81]. FKBP10 likely 
activates MEK/ERK through its PPIase domain, 
which catalyzes the cis/trans isomerization of proline 
residues, altering protein conformation, stability, and 
kinase activity [24, 25]. Furthermore, we confirm that 
CXCL8 induces M2 macrophage polarization, 
aligning with prior studies [32, 82]. This work 
provides a novel insight into how FKBP10 promotes 
tumor cell secretion of CXCL8, which in turn drives 
macrophage polarization toward the 
immunosuppressive M2 phenotype. This 
autocrine-paracrine loop sustains TME 
immunosuppression and may explain the correlation 
between high FKBP10 expression and disease 
progression in ccRCC patients. Given the 
well-characterized functional domains of FKBP10 
[80], the synergistic effect of siFKBP10 and anti-PD-1 
therapy in our preclinical models indicates that 
FKBP10 might be used as a target in combination with 
anti-PD-1 regimens, to overcome resistance in tumors 
with high FKBP10 expression. Furthermore, our 
preclinical models also suggest that Reparixin, a 
CXCR1/2 antagonist currently in clinical trials [83], 
enhances the efficacy of anti-PD-1 therapy in ccRCC. 
Our study identifies several promising therapeutic 
targets that could offer new strategies to overcome 
treatment resistance in ccRCC, warranting further 
in-depth preclinical and clinical investigations. 

Although our study provides new avenues for 
understanding ccRCC, several limitations must be 
acknowledged. First, in scRNA-seq data analysis, the 
removal of batch effects might inadvertently eliminate 
some biological signals. This issue, coupled with the 
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limited sample size of our study, may result in an 
underestimation of heterogeneity in ccRCC. The 
functions of the identified CMs and tumor cell states 
are primarily based on bioinformatics analysis, and 
further experimental validation is required to confirm 
these findings. Second, the retrospective nature of our 
sample collection underscores the necessity for 
prospective validation in multicenter cohort studies to 
ensure the robustness and generalizability of our 
findings. This limitation highlights the potential for 
selection bias, as the datasets used may not be fully 
representative of the broader ccRCC patient 
population. It not only affects the model’s stability but 
may also impact the generalizability of study results, 
reducing the model’s performance on independent 
validation sets. Additionally, our study did not fully 
explore the mechanistic basis for the observed effects 
on immunotherapeutic efficacy, which warrants 
additional investigation. Furthermore, although the in 
vitro and in vivo experiments provide evidence for the 
role of FKBP10 in ccRCC, the lack of clinical trial data 
limits the translation of these findings into clinical 
practice. Future research should address these 
limitations by incorporating prospective data 
collection, improving data completeness and 
diversity, exploring relevant biological mechanisms, 
and validating our findings in larger and more 
diverse patient populations to enhance clinical utility. 
Besides, rigorous future clinical trials are essential to 
determine the safety and efficacy of combining 
immunotherapy with targeted FKBP10 therapy in 
ccRCC. 

Building on existing research, this study 
systematically characterized the heterogeneity of the 
TME in ccRCC. Our integrated analysis of tumors and 
their microenvironment provides new insights into 
ccRCC progression and identifies potential targets for 
precision therapy. Notably, we uncovered a novel 
FKBP10-MEK/ERK-ELF3-CXCL8 signaling axis that 
plays a pivotal role in disease progression. 
Components of this pathway, including FKBP10, 
ELF3, CXCL8, and its receptor, represent promising 
therapeutic targets, warranting further in-depth 
preclinical and clinical research. 
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