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Inter-organelle communication has emerged as a 

key regulator of cellular homeostasis and disease 
pathology [1]. Although organelles were once viewed 
as self-contained compartments, emerging evidence 
has reframed organelle membrane contact sites 
(MCSs) as molecularly diverse signaling hubs that 
coordinate ion exchange, lipid metabolism, and stress 
responses. Notably, recent studies published in the 
International Journal of Biological Sciences have 
contributed to shifting this perspective by 
highlighting mitochondria-associated membranes 
(MAMs) as pharmacologically responsive interfaces 
implicated in neurodegenerative and metabolic 
disorders [2-4]. Chen et al. showed that dietary 
vanadium exposure remodels the hepatic MAM 
proteome, disrupting glucose homeostasis and 
promoting ferroptosis [3], while He et al. 
demonstrated that omega-3 polyunsaturated fatty 
acids restore MAM abundance and support 
spermatogenesis [4]. Together, these findings point to 
a broader conceptual shift in which MCSs are viewed 
not as passive structural contacts but as dynamic, 
druggable interfaces, bringing their small-molecule 
therapeutic potential into clearer focus. 

Here, we use the term “spatial pharmacology” 
to describe therapeutic strategies that modulate 
organelle connectivity rather than individual 
molecular activities. The implications of this concept 
extend well beyond the MAM. Recent studies show 
that diverse organelle contact sites function as key 
regulatory hubs and can be modulated 

pharmacologically. In early Alzheimer’s disease, 
Blarcamesine (ANAVEX2-73), an agonist of the  
Sigma-1 receptor localized at the MAM, demonstrated 
notable outcomes in clinical trials for Alzheimer's 
disease (NCT03790709) [5]. The flavonoid derivative 
LW-213 enhanced ER-lysosome interactions through 
direct binding to lysosomal protein LIMP2, thereby 
triggering lethal ER stress and suppressing acute 
myeloid leukemia progression [6]. Another natural 
product, tangeretin, exhibited protective mechanisms 
against Amyloid beta (Aβ) toxicity by modulating 
mitochondria-lysosome contacts [7]. At the 
ER-plasma membrane contact sites, the TAT-DP-2 
peptide provided neuroprotection in an ischemic 
stroke model by disrupting the Kv2.1-VAPA 
interaction [8]. Together, these examples illustrate a 
growing paradigm of “spatial pharmacology,” 
wherein targeted modulation of organelle 
connectivity acts as a distinct therapeutic mechanism 
(Figure 1). 

MCS-centered pharmacology is emerging as a 
new direction in drug discovery, connecting 
systems-level organelle biology with therapeutics 
ranging from small molecules to peptides. The main 
challenge now is achieving precise spatial and 
temporal control so that these strategies can be 
applied effectively in clinical settings. Because MCSs 
are structurally complex and highly dynamic, 
systemic drugs alone may not provide sufficient 
specificity, and additional approaches will be 
synergetic for more accurate manipulation of cellular 
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architecture. To this end, emerging technologies such 
as organelle-targeting nanoparticles and optogenetic 
tools represent a promising future direction. 
Nanoparticles can be engineered with specific 
physicochemical properties to exploit membrane 
potential or pH gradients, allowing them to enrich 
payloads at distinct organelle sites [9]. This targeted 
subcellular delivery allows organelle crosstalk to be 
modulated precisely, in ways that conventional 
whole-cell drug exposure cannot achieve. 
Optogenetic/chemogenetic tools that enable graded 
control of protein associations, such as 
small-molecule-activated binary association (SAMBA) 
systems, can also offer the ability to program the 
timing and duration of contact formation [10]. 
Furthermore, bridging structural understanding with 
pharmacological intervention will be essential to 
translate MCS-targeting strategies into clinically 
actionable therapies. 

Overall, these advances make it increasingly 
possible to control organelle contacts in a precise and 
predictable way. By adjusting how organelles connect 
and communicate, we can begin to treat these contact 
sites not just as structural features of the cell, but as 
real therapeutic targets. This idea, that cell function 
can be modulated by adjusting how organelles 

connect, captures the core of spatial pharmacology 
and suggests a new direction for future drug 
development. 
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Figure 1. Translating organelle contact site biology into spatial pharmacology and therapeutic intervention. Understanding of organelle membrane contact sites (MCSs) has 
progressed from structural characterization to therapeutic exploration. Small molecules and peptides that modulate ER–mitochondria or ER–lysosome contact dynamics can 
reprogram inter-organelle signaling and metabolic coordination, offering new opportunities for therapeutic intervention in neurodegenerative, cancer, and metabolic disorders. 
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