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Abstract 

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a prevalent chronic liver condition 
characterized by pathological fat accumulation in hepatocytes, with a global prevalence of approximately 
30% that continues to rise. Current treatment options are limited, highlighting an urgent need for novel 
therapeutic strategies. This review systematically examines the emerging promise of 
oligonucleotide-based drugs for MASLD treatment, including antisense oligonucleotide (ASO), small 
interfering RNA (siRNA), microRNA (miRNA) mimic or inhibitor, small activating RNA (saRNA) and 
splicing-switching oligonucleotide (SSO). We summarize the mechanisms of action of these therapeutics, 
which enable precise targeting of genes involved in MASLD pathogenesis. Furthermore, the review 
explores advanced delivery systems, particularly N-acetylgalactosamine (GalNAc) conjugation, which 
enhances hepatocyte-specific targeting. Finally, we discuss the current challenges facing oligonucleotide 
drug development and outline future directions for this rapidly advancing field, underscoring its potential 
to revolutionize MASLD management. 
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Introduction 
Metabolic Dysfunction-Associated Steatotic 

Liver Disease (MASLD) encompasses a wide 
spectrum of liver conditions, ranging from simple 
steatosis (MASL) to more severe forms such as 
metabolic dysfunction-associated steatohepatitis 
(MASH), end-stage cirrhosis, and even liver cancer[1-4]. 
MASLD is predominantly hallmarked by lipid 
deposition in hepatocytes, which is often 
accompanied by systemic metabolic disturbances, 
including insulin resistance and dysregulated 
carbohydrate and lipid metabolism. MASLD is 

typically attributed to a complex interplay of 
metabolic and pathological alterations, including 
genetic susceptibility, lipid metabolism abnormalities, 
oxidative stress, lipid toxicity, mitochondrial 
dysfunction, inflammation, dysbiosis of gut 
microbiota, and endoplasmic reticulum (ER) stress[4, 5]. 
This complex pathological mechanism undoubtedly 
poses a huge challenge for single-action drug 
development. Currently, several potential drugs for 
the treatment of MASLD are in phase II or III clinical 
trials[6], acting on multiple targets, such as C-C motif 
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chemokine receptor 2/5[7], peroxisome proliferator 
activated receptors α/β[8], farnesoid X receptor, and 
apoptosis signaling kinase 1[9]. However, due to their 
safety and efficacy and the complicated pathogenesis 
of MASLD, decades of target exploration and 
hundreds of clinical trials have failed, although the 
first drug, resmetirom, has recently been approved for 
the management of MASH[10-12].Therefore, there is a 
need for new drug candidates, especially innovative 
candidates with new targets. 

Oligonucleotides are short nucleic acid polymers 
that have emerged as a powerful therapeutic modality 
for treating a wide range of diseases. These chemically 
modified analogs, typically around 20 nucleotides in 
length[13], function by selectively binding to target 
mRNA via Watson-Crick base pairing, thereby 
controlling the production of specific proteins. This 
mechanism allows oligonucleotide therapies to 
address the underlying causes of disease, provide 
long-lasting effects, and target conditions previously 
considered intractable[14, 15]. 

A key advantage of oligonucleotides is that 
promising lead sequences can be rationally designed 
based on genomic knowledge. Their pharmacokinetic 
and pharmacodynamic properties are further 
optimized through chemical modifications to the 
nucleobase, ribose sugar, and phosphate backbone, 
often in conjunction with advanced drug-delivery 
vehicles[16-19]. Substantial investment over the past 
decade is fueling a rapid transition for this drug class 
from treatments for rare diseases to therapies for 
common disorders. This is reflected in a robust 
market trajectory, with the global oligonucleotide 
therapeutics market projected to grow significantly, 
driven by rising approvals and advancements in 
delivery technologies. For instance, Novartis’s 

acquisition of inclisiran, a cholesterol-lowering 
therapy for atherosclerotic cardiovascular disease, 
exemplifies this expansion toward addressing 
widespread conditions that affect hundreds of 
millions globally[20]. 

This review explores the latest breakthroughs in 
oligonucleotide therapy for MASLD, emphasizing 
innovative delivery strategies. It will systematically 
cover oligonucleotide types, chemical modifications, 
and advanced delivery systems like GalNAc 
conjugation for hepatocyte targeting. The discussion 
extends to clinical applications, focusing on specific 
MASLD molecular targets, and evaluates the safety 
profiles of these promising drugs, highlighting their 
transformative potential for developing clinically 
viable MASLD therapies. 

Oligonucleotide drug-development 
strategies for liver disease 

As small synthetic nucleic acid polymers, 
oligonucleotides target messenger RNA (mRNA), 
non-coding RNA (ncRNA), or DNA via 
complementary base pairing while also interacting 
with certain proteins through three-dimensional 
binding to show their potent gene-silencing capacity. 
Currently, antisense oligonucleotides (ASOs), small 
interfering RNAs (siRNAs), microRNA (miRNA) 
mimics or inhibitors, small activating RNAs (saRNAs) 
and splicing-switching oligonucleotides (SSOs) are 
the most intensively studied oligonucleotide species, 
with diversified action modes, including expression 
inhibition or activation of functional genes and 
non-coding transcripts, as well as mRNA splicing 
modulation[21]. 

 

 
Figure 1. Oligonucleotide-related therapeutic strategies for MASLD. Pathological progression of the liver from the normal state to fatty liver, fibrosis, cirrhosis, and 
cancer, along with the potential intervention strategies of antisense oligonucleotide (ASO), small interfering RNA (siRNA), miRNA mimic, and miRNA inhibitor. 
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Oligonucleotides are nucleic acid polymers with 
the potential to treat or manage a wide range of 
diseases. In addition to their ability to recognize 
specific target sequences via complementary base 
pairing, nucleic acids can also interact with proteins 
through the formation of three-dimensional 
secondary structures-a property that is also being 
exploited therapeutically. Here, we classify 
oligonucleotides into various types based on their 
mechanism of action. 

ASO 
ASOs are short nucleotide sequences that can 

induce gene silencing. Typically ranging from 15 to 22 
nucleotides in length, ASOs are specifically designed 
to be complementary to the target RNA in a reverse 
orientation, which is why they are termed "antisense" 
oligonucleotides. Through Watson-Crick base pairing, 
ASOs hybridize with complementary sequences in the 
target mRNA, thereby suppressing gene expression. 
These straightforward base pairing rules govern the 
interaction between antisense oligonucleotides and 
their targets, enabling the design of oligonucleotides 
to target virtually any gene with a known sequence[22]. 

ASOs are theoretically designed to regulate the 
transfer of genetic information to proteins specifically, 
but the mechanisms by which ASOs induce biological 
effects are subtle and complex (Fig. 2). Based on the 
mechanism of action, three major classes of ASOs can 
be discerned: (a) Downregulation mechanism of 

degradation. The ASO-mRNA double strands as a 
substrate recruit RNase H1, leading to degradation of 
the target transcript. (b) Downregulation mechanism 
of steric blockage. ASOs bind to pre-mRNA to alter 
polyadenylation position and decrease mRNA 
stability and levels. (c) Upregulation mechanism of 
steric blockage. ASOs inhibit miRNA function to 
increase the expression of their target mRNA[23]. 
Thanks to their single-nucleotide precision, ASOs 
have already redefined the clinical landscape for 
disorders such as spinal muscular atrophy and 
inherited retinal dystrophies, converting 
once-incurable genetic diseases into treatable 
conditions[24-27]. 

siRNA 
Small interfering RNA (siRNA) is a type of 

double-stranded RNA molecule with a molecular 
weight of approximately 13 kDa. It mediates gene 
silencing primarily through Watson-Crick base 
pairing, with its mechanism of action relies on the 
RNA-induced silencing complex (RISC). Upon 
binding to complementary sequences in target 
mRNA, the Argonaute family proteins (such as Ago2) 
within RISC catalyze the cleavage and degradation of 
the target mRNA. Alternatively, other Argonaute 
proteins such as Ago1, Ago3, and Ago4 can direct the 
mRNA to processing bodies ((P)-bodies) to mediate 
non-specific degradation[28]. 

 
 

 
Figure 2. Mechanisms of action for oligonucleotides. Representative mechanisms of action and intracellular localisation for (1) Antisense Oligonucleotide (ASO): Binds 
target mRNA (nucleus/cytoplasm); inhibits translation or recruits RNase H to cleave RNA-DNA duplex, reducing target protein. (2) siRNA: Enters cytoplasm; processed by 
Dicer to form RISC; guide strand cleaves target mRNA for RNAi-dependent silencing. (3) miRNA Mimic: Cytoplasmic; mimics endogenous miRNA, loads into RISC, recognizes 
multiple target mRNAs, inhibits translation (or mild degradation) to regulate gene networks. (4) miRNA inhibitor: Cytoplasmic antagonist; binds active miRNA with high affinity, 
blocks mRNA interaction to reverse silencing. (5) Aptamer: A single-stranded oligonucleotide folding into a specific 3D structure; localizing to the cell surface (binding membrane 
proteins) or cytoplasm (binding soluble proteins), and acting by blocking protein-ligand interactions, inhibiting protein enzymatic activity, or mediating targeted delivery. (6) 
Gapmer: Chimeric ASO binds mRNA (nucleus/cytoplasm), recruits RNase H to cleave for efficient silencing. (7) saRNA: Localizes to nucleus; binds gene promoters/enhancers, 
recruits co-activators (Ago2), induces chromatin remodeling to promote transcription. (8) SSO: Specifically binds pre-mRNA, modulates exon skipping/inclusion, and produces 
functionally normal/abnormal proteins. 
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Compared to small-molecule drugs and 
monoclonal antibodies, siRNA offer several 
significant advantages. It does not require recognition 
of the complex spatial conformation of proteins; 
instead, it can specifically target any protein-coding 
gene with a known sequence through base pairing. 
Consequently, siRNA has the potential to target a 
broad spectrum of therapeutic genes, including nearly 
all protein targets of interest[29]. 

miRNA mimic  
miRNA mimics simulate endogenous mature 

miRNAs and achieve gene silencing by enhancing 
their function. The miRNA mimic binds to the 3' 
untranslated region (UTR) of the target mRNA, which 
in turn induces mRNA degradation or translational 
repression. This study systematically defined the 
design principles of miRNA mimics for the first time, 
highlighting that they simulate the function of 
endogenous miRNAs through chemically synthesized 
double-stranded RNA and achieve gene silencing by 
targeting the 3' UTR of mRNA[30] 

miRNA inhibitor 
miRNA inhibitors can specifically inhibit the 

function of endogenous miRNAs, thereby releasing 
the regulation of target genes by these miRNAs. 
MiRNA inhibitors work by binding complementarily 
to mature miRNAs, thereby blocking their interaction 
with target mRNAs. Types of miRNA inhibitors 
include antisense oligonucleotides (ASO), Tough 
Decoy (TuD), and competitive endogenous RNA 
(ceRNA). These inhibitors function through a 
mechanism of single-stranded complementary 
binding to mature miRNAs, thereby blocking their 
activity[31]. 

Aptamer 
Aptamers are single-stranded deoxyribonucleic 

acid (DNA) or ribonucleic acid (RNA) 
oligonucleotides (20‐100 nucleotides) that adopt 

three‐dimensional structures, enabling them to bind 
very specifically to protein target sites[32]. 

In addition to high-affinity binding to their 
targets, aptamers also bind with high specificity, 
much like small molecules, discriminating between 
target proteins that share similar structural epitopes[33, 

34]. 

Gapmer 
Chimeric antisense oligonucleotides (ASOs) that 

contain a central block of DNA nucleotides, flanked 
by modified sequences, usually containing 2′‐O‐
modified or locked nucleic acid (LNA) chemistries. 
Gapmers are used for gene silencing by stimulating 
RNA cleavage through the recruitment of RNase H[33, 

35]. 
Research has indicated that the silencing effect of 

gapmer oligos is not solely dependent on RNase H1 
activation; instead, it appears that the RNA-induced 
silencing complex (RISC) is partially involved[36]. 

saRNA 
saRNAs is a group of small double strand RNA, 

which could effectively activate gene in a sequence 
specific manner[37]. The mechanism of action of 
saRNAs is illustrated as follows: (a) Through base 
complementary pairing, saRNAs specifically bind to 
either the DNA in the promoter region of target genes 
or the promoter-associated non-coding RNAs 
transcribed from these regions. (b) saRNAs associate 
with Argonaute (Ago) proteins and further assemble 
into the RNA-induced transcriptional activation 
(RITA) complex. (c) Guided by the RITA complex, 
relevant effector components induce epigenetic 
modifications to the chromatin within the target gene 
promoter region. (d) The RITA cooperates with RNA 
polymerase II (Pol II) to initiate target gene 
transcription, leading to robust upregulation of 
corresponding mRNA and protein expression[38]. 

 

Table 1. The advantages and disadvantages of each type of oligonucleotide.  

Oligonucleotide   Advantages  Disadvantages  
ASO[40, 41] Targets mRNA/pre-mRNA via multiple mechanisms. Cellular uptake relies on delivery vectors; homologous sequences risk 

off-target effects.  
siRNA[42, 43] High mRNA silencing efficiency via RNAi pathway; strong 

sequence specificity. 
Rapid degradation by nucleases; short in vivo half-life.  

miRNA-mimic[44] Mimics endogenous miRNAs to co-regulate multiple target 
genes. 

Multi-target regulation may disrupt normal gene regulatory networks. 

miRNA-inhibitor[45] Specifically blocks pathologically overexpressed miRNAs. May interfere with physiological functions of normal miRNAs. 
Aptamer[46, 47] Low immunogenicity; excellent biocompatibility. Limited penetration in solid tumors. 
Gapmer[48] Higher silencing efficacy than traditional ASOs. High risk of off-target RNA cleavage.  
saRNA[37, 49] Self-replicates for long-term protein production. Large molecular size/negative charge leads to high delivery difficulty. 
SSO[16] Targets pre-mRNA splicing to reprogram isoforms; high 

splicing-element specificity.  
Delivery-dependent uptake; risks disrupting physiological pre-mRNA 
splicing. 
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SSO 
SSOs are a class of nucleic acid drugs targeting 

the splicing process of precursor mRNA (pre-mRNA). 
As synthetic short-chain oligonucleotides (typically 
15-25 nt), they specifically bind to key splicing 
elements of pre-mRNA, interfering with the assembly 
or recognition of the spliceosome, thereby 
"reprogramming" gene splicing patterns. 

Essentially, their mechanism involves occupying 
binding sites of splicing elements or altering the 
secondary structure of pre-mRNA, which disrupts the 
recognition and binding of splicing factors, leading to 

altered splicing patterns. Examples include exon 
skipping (i.e., exclusion of specific exons from mRNA) 
and exon inclusion (i.e., retention of previously 
silenced exons in mRNA)[39]. 

Modifications of synthetic 
oligonucleotides 

Chemical modifications of synthetic 
oligonucleotides are essential strategies to enhance 
their specificity and efficacy for targeting tissues. 

 
 

 
Figure 3. Common chemical modifications for improving pharmacodynamic and pharmacokinetic properties in approved therapeutics. Schematic of an 
RNA nucleotide and its chemical modification sites (backbone, nucleobase, 2’-ribose substitutions and Rigid bicyclic sugar modifications). Backbone modifications: PS 
(phosphorothioate), PMO (phosphorodiamidate morpholino oligonucleotide). Nucleobase modifications: 5’-methyl-pyrimidine modifications; nucleobase modifications. 2’-ribose 
substitutions modifications: 2’-substitutions (2’-F/2’-fluoro, 2’-MOE/2’-O-methoxyethyl, 2’-OMe/2’-O-methyl). Rigid bicyclic sugar modifications: LNA (locked nucleic acid), cEt 
(constrained ethyl bridged nucleic acid), ENA (ethylene-bridged nucleic acid). 
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ASO 
ASOs modification technology is a therapeutic 

approach that uses chemically modified 
single-stranded DNA or RNA molecules to 
specifically bind to endogenous mRNA targets, 
thereby regulating gene expression, splicing, and 
inhibiting microRNA function. Fomivirsen was the 
first antisense oligonucleotide drug approved for 
human therapeutic use[29, 50]. 

The structural modifications of synthetic 
oligonucleotides (ASO) have undergone three 
generations of iteration, significantly enhancing the 
performance of these drugs. 

First Generation: The first generation involved 
replacing the phosphodiester bond with a 
phosphorothioate (PS) linkage, which enhanced 
nuclease resistance and extended serum half-life. 
However, this modification could reduce target 
binding affinity and induce toxicity. For example, 
Mipomersen was withdrawn from the market due to 
hepatotoxicity[51]. 

Second Generation: Building on the PS 
backbone, the second generation introduced 
2’-O-methyl or 2’-O-methoxyethyl (2’-MOE) 
modifications. By optimizing the sugar ring structure, 
these modifications increased binding affinity and 
reduced off-target effects. A typical example is 
Nusinersen, which enhanced splicing regulation 
through 2’-MOE modification. 

Third Generation: The third generation adopted 
rigid bicyclic structures, such as locked nucleic acid 
(LNA), cyclohexenyl (cEt), or ethylene-bridged 
nucleic acid (ENA). These modifications further 
improved binding affinity and tissue penetration[52]. 
For example, ASOs modified with LNA have been 
used in the treatment of liver fibrosis. 

siRNA 
The chemical modifications of siRNA, through 

alterations in the ribose, phosphate, and base groups, 
have become a key technology for the treatment of 
MASLD. Ribose modifications (such as 2’-O-methyl 
(2’-O-Me) and Locked Nucleic Acid (LNA)) enhance 
target binding affinity and nuclease resistance. 
Phosphate modifications (such as phosphorothioate 
(PS)) extend serum half-life to 24-48 hours and 
promote cellular uptake. Base modifications (such as 
pseudouridine) reduce immunogenicity[53]. 

In MASLD, GalNAc-conjugated siRNA 
modifications target hepatic pathogenic genes. For 
example, siRNA targeting PLIN2 (with 2’-MOE/PS 
modifications) reduces hepatic steatosis and fibrosis. 
Alnylam's HSD17B13-siRNA, delivered via GalNAc, 
improves liver function. Preclinical studies have 
shown that a single injection can safely provide 

long-lasting inhibition of the target gene. 
Arrowhead's ARO-HSD has entered Phase I clinical 
trials, verifying its tolerability and efficacy. In the 
future, siRNA modification technologies are expected 
to enable precise modulation of lipid metabolism, 
inflammation, and fibrosis pathways implicated in 
MASLD pathogenesis. 

miRNA mimic or inhibitor 
The modifications of miRNA mimics or 

inhibitors include 2’-O-Me and Locked Nucleic Acid 
(LNA) modifications. The 2’-O-Me modification 
enhances resistance to ribonucleases in serum and 
extends the half-life by methylating the 2’-hydroxyl 
group of the ribose. The first reported 2’-O-Me 
modified miRNA mimic demonstrated stable 
intracellular expression and effective gene silencing 
by targeting the 3’ UTR of mRNA[53, 54]. 

The LNA modification, through its rigid bicyclic 
structure, increases binding affinity to the target 
miRNA and reduces off-target effects. Miravirsen, an 
LNA-modified oligonucleotide targeting miR-122, has 
entered Phase II clinical trials for the treatment of 
HCV. The reduction in viral load was found to be 
dose-dependent on the inhibition of miR-122[55, 56]. 

Hepatic delivery systems of 
oligonucleotides 

The liver delivery systems for oligonucleotides 
are key technologies for enhancing the targeting 
efficiency and therapeutic efficacy of oligonucleotide 
drugs in liver tissue. Here are several common 
delivery systems. 

Cationic liposomes 
Cationic liposomes carry a positive charge on 

their surface, which can electrostatically interact with 
the phosphate groups of nucleic acids to encapsulate 
siRNA molecules, forming siRNA-liposome 
complexes. These complexes can also be adsorbed by 
negatively charged cell membranes and subsequently 
enter cells through fusion or endocytosis. 
Liposome-mediated transfection is currently the most 
used transfection method, with major commercial 
products including Lip2000[57], Lip3000[58], and 
LipMAX. The market also offers a wide variety of 
transfection reagents, including those from Promega 
(FUGENE), Polyplus, and Lipo8000, among others. 

Lipid nanoparticles 
Lipid nanoparticles (LNPs) serve as the core 

delivery vehicles for siRNA[59, 60]. Through the 
synergistic action of ionizable lipids, cholesterol, 
phospholipids, and polyethylene glycol (PEG), LNPs 
effectively address the challenges such as siRNA 
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charge exposure, enzymatic degradation, and 
endosomal escape. The ionizable lipids become 
protonated in acidic environments, forming 
complexes with siRNA that help protect its 
stability[61]. Cholesterol and phospholipids enhance 
the structure rigidity of the nanoparticles, while PEG 
modification reduces non-specific clearance through 
steric hindrance[62]. 

In MASLD, LNP-based delivery systems have 
demonstrated precise targeting capabilities and 
therapeutic potential. For hepatic fibrosis, studies 
using MASH mouse models have observed significant 
upregulation of IL-11 in activated hepatic stellate cells 
(aHSCs). By loading siRNA targeting IL-11 into LNPs, 
the IL-11/ERK signaling pathway is specifically 
blocked, thereby inhibiting the transdifferentiation of 
aHSCs and collagen deposition. For lipid metabolism 
disorders, GalNAc-conjugated LNPs can target the 
ASGPR receptor on the surface of hepatocytes, 
efficiently delivering siRNA to silence the MCJ gene. 

This approach has been shown to reduce hepatic lipid 
accumulation and alleviate fibrosis in various MASLD 
models[2, 33, 63]. With their mature delivery 
mechanisms and disease-specific targeting strategies, 
LNPs provide an innovative platform for the gene 
therapy of MASLD, combining safety and efficacy. 

GalNAc conjugates  
N-Acetylgalactosamine (GalNAc), a high-affinity 

ligand for the asialoglycoprotein receptor (ASGPR), 
has been conjugated to oligonucleotides through a 
trivalent cluster structure to achieve precise hepatic 
targeting and delivery[64-66]. This technology, 
originating from the targeting concept in 1987, has 
been continuously optimized over nearly two decades 
and has become a core delivery tool for 
oligonucleotide drugs such as siRNA, ASO, and 
Anti-miRNA[15]. 

 

 
Figure 4. Delivery technologies for oligonucleotides. LNP: Composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol (PEG), which collectively 
mediate its function. AAV: Enters target cells via endocytosis (capsid recognizes specific surface receptors); releases single-stranded DNA (after capsid disassembly) that is 
repaired to double-stranded DNA, then enters the nucleus for exogenous gene delivery. GalNAc conjugate: Synthetic triantennary N-acetyl-d-galactosamine (GalNAc) 
conjugated to siRNA, mediating binding to hepatocyte surface asialoglycoprotein receptor (ASGPR). Exosome: Has a lipid bilayer membrane and internal lumen; lumen-loaded 
functional molecules (nucleic acids: siRNA/mRNA; small-molecule drugs: chemotherapeutics; proteins: antibodies/enzymes) are core for therapeutic effects. Antibody-siRNA: 
Novel targeted therapy (antibody/fragment conjugated to siRNA via linkers); antibody guides siRNA to specific cells, where siRNA silences disease genes for targeted gene 
silencing. 
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In the therapeutic field of Anti-miRNA, RG-101 
from Regulus Therapeutics targets miR-122 through 
GalNAc conjugation and significantly reduces the 
viral load in the treatment of hepatitis C [53]. In the 
development of ASO, Ionis Pharmaceuticals' Ligand 
Conjugated Antisense (LICA) technology, which 
utilizes GalNAc conjugation, has enhanced drug 
potency by 10-fold[67]. 

The GalNAc conjugation technology, which 
leverages highly efficient endocytosis mediated by 
ASGPR (with a 300-fold increase in liver enrichment 
efficiency), low immunogenicity, and compatibility 
with various oligonucleotide modalities, has 
propelled multiple drugs (such as Givosiran and 
Inclisiran) to market approval and has become a key 
platform for the gene therapy of liver diseases[15, 68]. 

Viral vector platforms  
Since the first clinical application of retroviruses 

in treating severe combined immunodeficiency 
caused by adenosine deaminase (ADA) deficiency in 
1990, lentiviruses (LVs), adenoviruses (AdVs), and 
adeno-associated viruses (AAV) have become the 
three major viral vectors used for nucleic acid drug 
delivery. In the treatment of metabolic diseases, these 
viral vectors have demonstrated significant 
potential[69]. 

AAV vectors, regulated by inhalation of 
muscone to control the expression of hFGF21, 
achieved long-term treatment lasting up to 28 weeks 
in MASH mouse models, significantly reducing 
hepatic steatosis and inflammation. Lentivirus vectors 
delivering siRNA targeting SREBP-1c reduced hepatic 
SREBP-1c mRNA levels by 60% and triglycerides by 
35% in high-fat diet (HFD) mice, effectively inhibiting 
lipid synthesis[70]. Adenovirus vectors mediating the 
overexpression of the Nrf2 gene activated the 
antioxidant pathway, decreased hepatic reactive 
oxygen species (ROS) levels, and reduced ALT/AST 
levels by 50% in metabolic steatotic liver disease 
(MASLD) model mice, significantly improving insulin 
resistance[71-73]. 

Exosomes 
The natural exosome consists of a lipid bilayer 

membrane and an internal lumen. The functional 
molecules loaded in the lumen, such as nucleic acids 
(siRNA/mRNA), small-molecule drugs (chemo-
therapeutic agents), and proteins (antibodies/ 
enzymes), are the core for exerting therapeutic effects. 
As endogenous extracellular vesicles, exosomes have 
a diameter comparable to that of nanoscale carriers[74]. 
Moreover, exosomes can carry various signaling 
molecules (such as RNA and proteins), which endows 
them with the potential to serve as drug delivery 

vehicles. Compared to exogenous nanocarriers, 
exosomes offer notable advantages such as minimal 
immunogenicity and reduced toxicity. For example, 
exosome-carried miR-100-5p can significantly 
alleviate liver fibrosis in mice induced by a high-fat 
diet (HFD) by inhibiting the TGF-β/Smad3 signaling 
pathway in hepatic stellate cells (HSCs)[75-78]. 

Antibody-drug conjugates 
Antibody's precise targeting to guide siRNA to 

specific cells, where siRNA silences disease-causing 
genes, achieving "targeted gene silencing". The 
mechanism of action of antibody-drug conjugate 
(ADC) delivery systems is based on a “five-step 
precision strike”: circulation in the bloodstream, 
targeted binding, endocytosis, linker cleavage, and 
drug action[79, 80]. This mechanism enables “precision 
targeting” and “dual therapeutic effects” through 
antibody navigation, intelligent release, and 
synergistic killing. For example, CD36 ADC 
conjugated with a PPARγ agonist (such as 
rosiglitazone) can inhibit fatty acid uptake and reduce 
hepatic triglyceride (TG) content by 30%[81]. 

Oligonucleotide in MASLD 
Currently, oligonucleotides have been used in 

the treatment of metabolic-associated steatotic liver 
disease. These oligonucleotides can target relevant 
targets and regulate the processes involved in the 
pathogenesis and progression of MASLD. 

ASO-based therapies 
PNPLA3. PNPLA3 catalyzes the hydrolysis of 

triglycerides and the transfer of polyunsaturated fatty 
acids, thereby mediating the remodeling of 
phospholipids in hepatic lipid droplets. 
Genome-wide association studies (GWAS) have 
identified a strong correlation between PNPLA3 
variants and MASLD[91, 92]; these variants drive 
triglyceride retention and the formation of 
polyunsaturated fatty acid-enriched lipid droplets, 
which may elevate the risk of MASH and 
hepatocellular carcinoma. Preclinical studies have 
shown that PNPLA3-targeting ASOs can alleviate 
liver inflammation and fibrosis in mouse models. 

Currently, AstraZeneca’s PNPLA3-targeted ASO 
therapy (AZD2693) is under Phase I clinical 
evaluation[93, 94]. 2025-published data from these trials 
report 89% hepatic PNPLA3 mRNA knockdown 
(biopsy-assessed) in treated subjects; in the 148M 
homozygous cohort (the MASLD-susceptible variant), 
early safety signals align with ASO class effects (e.g., 
mild injection-site reactions), with no dose-limiting 
toxicities observed. 
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Table 2. The viral vector delivery systems for oligonucleotides. 

Vector Type Advantages Disadvantages Application Potential in MASLD 
Adeno-associated Virus 
(AAV) 

Low immunogenicity, long-term expression, 
strong targeting ability. 

Small capacity (< 5 kb), high 
production cost. 

Deliver anti-fibrosis genes (such as miR-296 
mimetics). 

Lentivirus (LV) Integrate into the genome, efficiently 
transduce dividing/non-dividing cells. 

Risk of insertional mutagenesis, 
high immunogenicity. 

Gene editing (such as CRISPR-Cas9). 

Adenovirus (AdV) High transduction efficiency, large capacity 
(> 30 kb). 

High immunogenicity, transient 
expression. 

Short-term gene delivery (such as inflammatory 
regulatory factors). 

 

Table 3. Therapeutic advantages of exosomes in the treatment of MASLD. 

Characteristics Therapeutic Advantages in MASLD Treatment 
Natural carrier Derived from cells, low immunogenicity, high biocompatibility. 
Barrier-crossing ability Can cross the blood-brain barrier (BBB), placental barrier, and target the liver (via ASGPR and other receptors). 
Cargo diversity Load mRNAs, siRNAs, proteins, drugs, etc., to regulate multiple pathways (such as inflammation, fibrosis, metabolism). 
Targetability engineering Enhance liver-specific targeting through surface modification (such as antibodies, ligands). 
Stability The outer membrane protects the cargo, prolonging the in-vivo circulation time (compared to nucleic acid drugs). 

 

Table 4. Hepatic delivery systems for oligonucleotides in MASLD. 

Delivery System  Core Advantages Key Disadvantages MASLD Application Highlights  
Cationic liposomes High loading efficiency (>90%), simple preparation, 

modifiable for targeting. 
Poor in vivo stability, rapid RES 
clearance, limited targeting 
specificity. 

Potential anti-inflammatory delivery 
(targeting TNF-α)[82]. 
 

Lipid nanoparticles  High encapsulation efficiency (>85%), 
pH-responsive release, targetable to 
hepatocytes/macrophages, 30-fold dose reduction. 

Immunogenicity risk, complex 
manufacturing, high cost. 

Loaded with HMGB1/Bid-siRNA to 
improve MASH inflammation/fibrosis[83, 

84].  
GalNAc conjugates Exceptional hepatocyte specificity, 10-100-fold 

potency enhancement, low immunogenicity, 
clinically validated safety. 

Hepatocyte-only targeting, requires 
chemical modification, receptor 
saturation at high doses. 

Targeting Stk25/MCJ to improve 
steatosis/fibrosis[85].  

Viral vector platforms Ultra-high transfection efficiency, long-term stable 
expression, large payload capacity. 

High immunogenicity, insertional 
mutagenesis risk, scalability 
challenges. 

Efficacious in liver fibrosis models 
(targeting PAI-1/TIMP-1)[86]. 
 

Exosomes Excellent biocompatibility, low immunogenicity, 
co-loadable with multiple molecules. 

Low yield, complex purification, 
limited loading capacity. 

Loaded with TNF-α ASO to improve 
MASH and alleviate liver fibrosis[87, 88]. 

Antibody-Drug 
Conjugates  

Precise targeting of specific hepatic cell 
populations, minimal off-target effects, low toxicity. 

Complex preparation, extremely 
high cost, efficacy affected by antigen 
heterogeneity. 

Targeting CD248/F4/80 for 
anti-fibrosis/anti-inflammation[89, 90]. 

 
DGAT2. DGAT2 is one of the two isoenzymes 

that catalyze the synthesis of triglycerides. Along with 
DGAT1, it is responsible for nearly all triglyceride 
synthesis. Since the synthesis of triglycerides in 
MASH is primarily driven by the catalytic activity of 
DGAT2, inhibiting its activity may suppress 
triglyceride synthesis and slow the progression of 
MASLD[95]. Currently, the ASO therapy targeting 
DGAT2, ION224, has entered Phase II clinical trials 
for the treatment of patients with confirmed MASH, 
with the primary endpoint data expected to be 
available in September of this year[96, 97]. 

ANGPTL4. ANGPTL4 is highly expressed in 
adipose tissue and the liver, and its dysfunction is 
closely associated with various metabolic diseases. 
Studies have shown that loss-of-function variants of 
ANGPTL4 are significantly correlated with reduced 
risks of dyslipidemia, coronary artery disease (CAD), 
type 2 diabetes (T2D), steatosis, metabolic 
dysfunction-associated steatohepatitis (MASH), and 
chronic kidney disease (CKD)[98-100]. Mechanistically, 

inactivation of ANGPTL4 can lower LDL-C and 
triglyceride (TG) levels, inhibit hepatic steatosis and 
fibrosis, and slow the progression of CAD, T2D, and 
CKD. In high-fat diet (HFD) mouse models, antisense 
oligonucleotide (ASO) therapy targeting ANGPTL4 
can specifically silence its expression, improve 
dysmetabolism of glucose and lipids, and alleviate 
hepatic steatosis and inflammatory responses[29]. 
These findings provide preclinical evidence 
supporting ANGPTL4 as a therapeutic target for 
metabolic diseases, and ASO therapy holds promise 
as a new strategy for intervening in dyslipidemia and 
related complications. 

APOC3. Apolipoprotein C-III (APOC3) is a key 
regulator of lipid metabolism. It inhibits the clearance 
of triglyceride (TG)-rich lipoproteins by hepatocytes, 
leading to elevated levels of TG and very-low-density 
lipoprotein (VLDL) in the bloodstream, as well as 
reduced high-density lipoprotein cholesterol 
(HDL-C). Due to its high specific expression in the 
liver, APOC3 has become an ideal target for RNA 
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silencing technologies. The antisense oligonucleotide 
(ASO) therapy approved by the European Union and 
Arrowhead's RNAi therapy, ARO-APOC3, both 
target APOC3 by using RNA interference 
mechanisms to reduce its levels and thereby lower 
TG. ARO-APOC3 has shown remarkable performance 
in clinical trials, achieving over 90% reduction in TG 
level and significantly improving dyslipidemia. By 
silencing APOC3 gene expression, these therapies 
restore the normal lipoprotein clearance function of 
hepatocytes, providing a precise treatment strategy 

for diseases such as hypertriglyceridemia. The high 
efficiency of these therapies validates APOC3 as a 
drug target[101]. 

siRNA-based therapies 
The mechanism of action of small interfering 

RNA (siRNA) is based on post-transcriptional gene 
silencing. siRNA molecules are typically specific and 
effective in knocking down disease-related genes[102]. 

 
 

 
Figure 5. Oligonucleotide drugs for MASLD. This schematic outlines the pathophysiological regulation of steatotic hepatocytes, including effects of upstream factors (fatty 
acids, insulin resistance, immune signals). It also depicts activated stellate cell-collagen links and inflammatory cell involvement, with key regulatory molecules labeled. Available 
therapeutic drugs for each target are listed below the targets. 

 

Table 5. Application of ASO in metabolic dysfunction-associated steatohepatitis. 

 
 

Target Pathway Mechanism of Action Preclinical/Clinical Status Drug/Developer Company 
PNPLA3 Lipid 

metabolism/Inflammation. 
Inhibit lipolysis and reduce intrahepatic 
triglyceride accumulation. 

Phase I Trial AZD2693 (AstraZeneca) 

DGAT2 Lipid synthesis. Block triglyceride synthesis and promote 
fatty acid oxidation. 

Phase II Trial ION224 (Ionis 
Pharmaceuticals) 

ANGPTL4 Lipoprotein 
metabolism/Inflammation. 

Enhance lipoprotein lipase activity and 
reduce triglyceride levels. 

Phase II Trial (REGN1500, 
Regeneron) 

REGN1500 (Regeneron) 

APOC3 Triglyceride metabolism. Inhibit the secretion and clearance of 
triglyceride-rich lipoproteins. 

Phase III Trial 
(IONIS-APOC3-LRx, Ionis) 

IONIS-APOC3-LRx (Ionis 
Pharmaceuticals) 
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HSD17B13. 17-β-Hydroxysteroid Dehydro-
genase 13 (HSD17B13) is a liver-specific lipid droplet 
protein that plays a key role in regulating hepatic 
lipid droplet homeostasis. Elevated expression of 
HSD17B13 promotes denovo lipogenesis and causes 
enlargement of lipid droplets, thereby contributing to 
the development of hepatic steatosis. Therefore, 
inhibiting the expression of HSD17B13 using 
oligonucleotide is a potential therapeutic strategy for 
MASLD[103]. Currently, RNAi therapies targeting 
HSD17B13 from Arrowhead and Alnylam are both 
being evaluated in Phase II clinical trials[104, 105]. 

SREBP-1c. Sterol Regulatory Element-Binding 
Protein 1c (SREBP-1c) is a core transcription factor for 
lipid synthesis, driving the de novo synthesis of fatty 
acids and triglycerides in the liver by regulating genes 
such as fatty acid synthase (FAS) and acetyl-CoA 
carboxylase (ACC). Its overexpression is closely 
related to insulin resistance, hepatic steatosis, and 
inflammation, making it a key pathological 
mechanism in MASLD. In AML12 hepatocytes, 
SREBP-1c siRNA reduces lipid droplet formation and 
enhances fatty acid oxidation by upregulating 
PPARα[106]. siRNA targeting SREBP cleavage- 
activating protein (SCAP) (such as Merck's MK-0616) 
has significantly reduced LDL-C and triglycerides in a 
rhesus monkey model, indirectly supporting the 
therapeutic potential of targeting the SREBP 
pathway[107]. 

PLIN2. Perilipin2 (PLIN2) is a key protein on the 
surface of lipid droplets (LDs). It promotes hepatic 
lipid storage by stabilizing the structure of lipid 
droplets and inhibiting the hydrolysis of triglycerides 
by lipases (such as ATGL)[108]. A team from Peking 
University has developed siRNA targeting PLIN2 and 
utilized a lipid nanoparticle (LNP) delivery system to 
achieve liver-specific silencing. In mouse models, this 
approach significantly alleviated steatosis without 

apparent toxicity. In a mouse model of fatty liver 
induced by a high-fat diet (HFD), PLIN2-siRNA 
downregulated PLIN2 expression, enhanced 
ATGL-mediated lipolysis, reduced hepatic 
triglyceride deposition, and improved insulin 
sensitivity[109, 110]. 

TGF-β1. Transforming Growth Factor-β1 
(TGF-β1) is a core molecule in the fibrotic pathway[111]. 
It promotes collagen deposition and extracellular 
matrix (ECM) remodeling by activating hepatic 
stellate cells (HSCs), leading to liver fibrosis and even 
cirrhosis. In HSC cell lines and mouse models, TGF-β1 
siRNA inhibits the TGF-β1/Smad pathway, reduces 
the expression of fibrosis markers, and promotes HSC 
apoptosis. In a MASH model induced by a high-fat 
diet (HFD) combined with a choline-deficient and 
amino acid-defined diet (CDAA), TGF-β1 siRNA 
significantly alleviates hepatic steatosis, 
inflammation, and fibrosis[112]. 

RPL8. Ribosomal Protein L8 (RPL8) is a key 
component of the large ribosomal subunit. By 
regulating ribosome biogenesis and translation 
efficiency, it affects the expression of genes involved 
in lipid synthesis. In HepG2 cells and high-fat diet 
(HFD) mice, si-RPL8 reduces lipid droplet formation, 
improves mitochondrial function, and decreases the 
expression of inflammatory factors (such as TNF-α 
and IL-6)[113]. 

TNF-α. Tumor Necrosis Factor-α (TNF-α) is a 
pro-inflammatory cytokine that plays a central role in 
the progression of MASLD, contributing through 
activation of the inflammatory cascade, promoting 
hepatocyte apoptosis and fibrosis, and disrupting 
lipid metabolism. In a liver fibrosis model induced by 
bile duct ligation (BDL), TNF-α siRNA reduces 
collagen deposition (a 50% decrease in Sirius Red 
staining) and inhibits the expression of TGF-β1[114-116]. 

 

Table 6. Application of siRNA in metabolic dysfunction-associated steatohepatitis. 

Target Pathway Mechanism of Action Preclinical/Clinical 
Status 

Drug/Developer Company 

HSD17B13 Lipid 
metabolism/Oxidative 
stress. 

Inhibit 17β-hydroxysteroid dehydrogenase 
activity, reduce lipid synthesis and oxidative 
stress. 

Phase II Trial ARO-HSD (Arrowhead 
Pharmaceuticals); ALN-HSD (Alnylam 
Pharmaceuticals; Regeneron) 

SREBP-1c Lipid synthesis. Reduce the expression of fatty acid synthase 
(FAS) and acetyl-CoA carboxylase (ACC). 

Phase II Trial ALN-SREBP (Alnylam 
Pharmaceuticals) 

PLIN2 Lipid droplet stability. Enhance the secretion of very low-density 
lipoprotein (VLDL), promote lipid mobilization. 

Preclinical Not public (Developed by a Chinese 
team) 

TGF-β1 Fibrosis. Inhibit the activation of hepatic stellate cells 
(HSC), reduce collagen deposition. 

Phase II Trial STP705 (Sirnaomics) 

RPL8 Ribosome function. Reduce ribosome-mediated lipid synthesis, 
alleviate endoplasmic reticulum (ER) stress. 

Preclinical Not public (Developed by the Chinese 
Academy of Sciences) 

TNF-α Inflammation. Block NF-κB signaling pathway, inhibit the 
secretion of pro-inflammatory factors. 

Preclinical Not public (Early-stage development 
by some companies) 
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Table 7. miRNA mimic or inhibitor-based therapies. 

Target Drug Name Mechanism of Action Clinical Trial Phase Indication Delivery System 
miR-122 RG-101 Inhibit SREBP-1c-mediated lipid 

synthesis and improve insulin 
resistance. 

Discontinued MASLD (Hepatic Steatosis) GalNAc-conjugated 
(ASO) 

miR-122 Miravirsen Preclinical, downregulate SREBP-1c, 
SCD-1, reduce cholesterol and 
triglyceride. 

Preclinical Hypercholesterolemia/MASLD GalNAc-conjugated 
(ASO) 

miR-29b GSK343 Inhibit the TGF-β/Smad pathway, 
reduce HSC activation and collagen 
deposition (indirectly upregulate 
miR-29b). 

Phase I/II (Ongoing) MASH-related Fibrosis Lipid Nanoparticle 
(LNP) 

miR-155 TargomiRs Inhibitor, downregulate TNF-α, IL-6 
expression and alleviate 
inflammation. 

Preclinical MASH-related Inflammation Exosome/Polymer 
Nanoparticle 

miR-34a Antisense 
Oligonucleotide 

Inhibitor, block miR-34a via 
ASO/siRNA, activate PPARγ and 
improve lipid metabolism. 

Phase I/II (Ongoing) MASH (Fibrosis) LNP/ASGPR 
Ligand-conjugated 

 

miRNA mimic or inhibitor-based therapies 
miR-122. RG-101 is a GalNAc-conjugated 

anti-miR-122 oligonucleotide. Its Phase I trials 
showed strong efficacy: a single 2/4 mg/kg dose 
reduced viral load in 32 multi-genotype chronic HCV 
patients and modulated immune markers; a Phase I 
multicenter trial confirmed activity in multi-genotype, 
refractory/relapsed cases, alongside hepatic 
lipid-lowering effects and good tolerability[117]. 

However, RG-101 development was halted in 
2016: a Phase I jaundice case triggered an FDA hold. 
Despite Regulus submitting risk-mitigation plans, the 
agent was discontinued pre-Phase II and is no longer 
an active HCV candidate. 

In MASLD, miR-122 is downregulated. Its mimic 
can reduce hepatic fat deposition and improve insulin 
resistance by inhibiting SREBP-1c[118]. Preclinical 
studies have shown that the miR-122 mimic 
Miravirsen can significantly reduce cholesterol and 
triglyceride levels[119, 120]. 

miR-29b. GSK343 alleviates liver fibrosis by 
inhibiting the TGF-β/Smad signaling pathway, 
thereby reducing the activation of hepatic stellate cells 
and collagen deposition. Inhibition of the TGF-β 
pathway may upregulate the expression of miR-29b, 
which could further enhance the anti-fibrotic effect 
(further validation is needed)[121]. In models of insulin 
resistance, inhibition of miR-29b can enhance hepatic 
insulin sensitivity and reduce hepatic glucose output 
by activating the PI3K/Akt pathway[122]. 

miR-155. TargomiRs utilize bacterial minicells to 
deliver miRNA mimics for gene regulation. Currently 
in the preclinical stage[123, 124]. The relevant inhibitors 
can decrease the expression of tumor necrosis factor α 
(TNF-α) and interleukin 6 (IL-6), thereby alleviating 
hepatic inflammation. In MASH models, inhibiting 
miR-155 can significantly improve liver injury and 
fibrosis[125]. 

miR-34a. For example, the clinical trial 

NCT04053549 evaluates its efficacy in MASH. Phase: 
This trial is a Phase I/II study, aiming to assess the 
safety, tolerability, and preliminary efficacy of 
miR-34a inhibitors in patients with MASH[126]. 
Intervention: Antisense oligonucleotides (ASO) or 
small interfering RNA (siRNA) are used to target and 
inhibit miR-34a, with enhanced therapeutic effects 
achieved through liver-targeted delivery systems 
(such as lipid nanoparticles or ASGPR ligand 
conjugation)[127]. 

Safety issues of synthetic 
oligonucleotides 

Synthetic oligonucleotides have a wide range of 
applications in the biomedical field, however, their 
use is associated with certain safety concerns, which 
are mainly reflected in the following aspects: 

Off-target effects 
Off target effects can occur due to non-specific 

binding of oligonucleotides to non-target RNA, or 
unintended gene silencing triggered by seed region 
matching[128]. For instance, Mipomersen, an ASO 
targeting ApoB, consists of a phosphorothioate 
backbone that can bind non-specifically to ApoB 
mRNA, potentially leading to off-target interactions 
and resulting in elevated liver enzyme levels[51, 129-131]. 

Immunogenicity 
Synthetic oligonucleotides may be recognized by 

the immune system as foreign substances, thereby 
triggering innate immune responses, such as the 
activation of Toll-like receptors (TLRs) which leads to 
the release of inflammatory cytokines[132]. For 
example, DNA containing unmethylated CpG motifs 
can activate TLR9, triggering a cytokine storm. 
Immunogenicity of PS-modified ASO: The 
phosphorothioate (PS) backbone activates TLR7/8, 
leading to elevated liver enzymes and systemic 
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inflammatory responses in MASLD patients, as 
demonstrated in clinical studies[51]. 

Toxicity 
Certain chemical modifications (such as 

phosphorothioate) may lead to kidney or liver 
toxicity, and long-term administration may 
accumulate adverse effects. For example, the PS-ASO 
drug Oligomycin has been shown to induce acute 
kidney injury in mouse models, characterized by 
elevated serum creatinine and tubular necrosis[133]. 
High doses of ASO may disrupt normal RNA 
metabolism or cause cholestasis[134]. 

Delivery systems 
The ASGPR receptor, which is highly expressed 

in the liver (such as galactose-modified lipid 
nanoparticles), provides enhanced targeting for 
drug-delivery systems, but excessive delivery may 
exacerbate liver injury. GalNAc-siRNA (such as 
Fesomersen) has been associated with 
dose-dependent elevation in liver enzymes in patients 
with MASH[135]. The inflammatory state within the 
liver of MASLD patients may enhance the 
immunogenicity of AAV capsid proteins[136, 137]. 
During AAV8 vector-based treatment for MASH, 
pre-existing antibodies can lead to reduced 
therapeutic efficacy[138]. 

Challenges and future directions 
In recent years, a deeper understanding of the 

pathological mechanism underlying MASLD has 
propelled the development of emerging 
oligonucleotide therapies, such as antisense 
oligonucleotides and small interfering RNAs. 
Meanwhile, liver-targeted and hepatocyte-specific 
gene editing technologies-including CRISPR systems 
(delivered via AAV or Lipid Nanoparticles, LNP)-are 
advancing rapidly in both basic research and clinical 
translation. These innovative approaches offer the 
potential for precise modulation of gene expression 
involved in lipid metabolism, inflammation, and 
fibrosis, thereby addressing limitations of current 
therapies and paving the way for personalized, 
mechanism-based interventions to halt or reverse 
disease progression. Despite these promising 
advances, challenges remain in optimizing 
liver-targeted delivery efficiency, ensuring long-term 
safety, and tailoring precise application to different 
pathological stages. The multifactorial nature of 
MASLD, involving metabolic, inflammatory, and 
fibrotic pathways, further complicates the 
development of effective treatments and underscores 
the need for personalized approaches. Additionally, 
early diagnosis remains difficult, often resulting in 

delayed intervention and progression to advanced 
liver disease. Future research should focus on 
elucidating the molecular mechanisms underlying 
MASLD to identify novel therapeutic targets. Future 
efforts are needed to optimize delivery systems, 
develop of multi-target combination therapies, and 
design precise drugs based on the individual 
pathological characteristics of MASLD. These 
advances are expected to facilitate the translation of 
oligonucleotide therapies from basic research to 
clinical application, offering new therapeutic hope for 
the growing global population affected by MASLD. 
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