Int J Biol Sci 2016; 12(10):1262-1272. doi:10.7150/ijbs.16150 This issue Cite

Research Paper

Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat

Shang-Chun Guo1*, Shi-Cong Tao2*, Wen-Jing Yin2, Xin Qi2, Jia-Gen Sheng2✉, Chang-Qing Zhang1,2✉

1. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;
2. Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
*Co-first authors: These authors contributed equally to this work.

Citation:
Guo SC, Tao SC, Yin WJ, Qi X, Sheng JG, Zhang CQ. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. Int J Biol Sci 2016; 12(10):1262-1272. doi:10.7150/ijbs.16150. https://www.ijbs.com/v12p1262.htm
Other styles

File import instruction

Abstract

Graphic abstract

Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering. Herein, we provided the first demonstration that the early treatment of exosomes secreted by human synovial-derived mesenchymal stem cells (SMSC-Exos) could prevent GC-induced ONFH in the rat model. Using a series of in vitro functional assays, we found that SMSC-Exos could be internalized into bone marrow derived stromal cells (BMSCs) and enhance their proliferation and have anti-apoptotic abilities. Finally, SMSC-Exos may be promising for preventing GC-induced ONFH.

Keywords: osteonecrosis of the femoral head, glucocorticoid, synovial-derived mesenchymal stem cells, apoptosis.


Citation styles

APA
Guo, S.C., Tao, S.C., Yin, W.J., Qi, X., Sheng, J.G., Zhang, C.Q. (2016). Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. International Journal of Biological Sciences, 12(10), 1262-1272. https://doi.org/10.7150/ijbs.16150.

ACS
Guo, S.C.; Tao, S.C.; Yin, W.J.; Qi, X.; Sheng, J.G.; Zhang, C.Q. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. Int. J. Biol. Sci. 2016, 12 (10), 1262-1272. DOI: 10.7150/ijbs.16150.

NLM
Guo SC, Tao SC, Yin WJ, Qi X, Sheng JG, Zhang CQ. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. Int J Biol Sci 2016; 12(10):1262-1272. doi:10.7150/ijbs.16150. https://www.ijbs.com/v12p1262.htm

CSE
Guo SC, Tao SC, Yin WJ, Qi X, Sheng JG, Zhang CQ. 2016. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. Int J Biol Sci. 12(10):1262-1272.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image