Int J Biol Sci 2017; 13(7):911-922. doi:10.7150/ijbs.18402 This issue

Research Paper

In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) Are Co-expressed with SNMP1

Pablo Pregitzer1✉, Xingcong Jiang1, Ewald Grosse-Wilde2, Heinz Breer1, Jürgen Krieger3, Joerg Fleischer3✉

1. University of Hohenheim, Institute of Physiology (230), Stuttgart, Germany
2. Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
3. Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale), Germany

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( See for full terms and conditions.
Pregitzer P, Jiang X, Grosse-Wilde E, Breer H, Krieger J, Fleischer J. In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) Are Co-expressed with SNMP1. Int J Biol Sci 2017; 13(7):911-922. doi:10.7150/ijbs.18402. Available from

File import instruction


Graphic abstract

Under given environmental conditions, the desert locust (Schistocera gregaria) forms destructive migratory swarms of billions of animals, leading to enormous crop losses in invaded regions. Swarm formation requires massive reproduction as well as aggregation of the animals. Pheromones that are detected via the olfactory system have been reported to control both reproductive and aggregation behavior. However, the molecular basis of pheromone detection in the antennae of Schistocerca gregaria is unknown. As an initial step to disclose pheromone receptors, we sequenced the antennal transcriptome of the desert locust. By subsequent bioinformatical approaches, 119 distinct nucleotide sequences encoding candidate odorant receptors (ORs) were identified. Phylogenetic analyses employing the identified ORs from Schistocerca gregaria (SgreORs) and OR sequences from the related species Locusta migratoria revealed a group of locust ORs positioned close to the root, i.e. at a basal site in a phylogenetic tree. Within this particular OR group (termed basal or b-OR group), the locust OR sequences were strictly orthologous, a trait reminiscent of pheromone receptors from lepidopteran species. In situ hybridization experiments with antennal tissue demonstrated expression of b-OR types from Schistocerca gregaria in olfactory sensory neurons (OSNs) of either sensilla trichodea or sensilla basiconica, both of which have been reported to respond to pheromonal substances. More importantly, two-color fluorescent in situ hybridization experiments showed that most b-OR types were expressed in cells co-expressing the “sensory neuron membrane protein 1” (SNMP1), a marker indicative of pheromone-sensitive OSNs in insects. Analyzing the expression of a larger number of SgreOR types outside the b-OR group revealed that only a few of them were co-expressed with SNMP1.

In summary, we have identified several candidate pheromone receptors from Schistocerca gregaria that could mediate responses to pheromones implicated in controlling reproduction and aggregation behavior.

Keywords: olfaction, insect, pheromone receptor, desert locust, antenna, sensory neuron membrane protein 1