Int J Biol Sci 2005; 1:19-23. doi:10.7150/ijbs.1.19 This volume

Short research paper

No more than 14: the end of the amphioxus Hox cluster

Carolina Minguillón1 4, Josep Gardenyes1, Elisa Serra1, L. Filipe C. Castro2, Alicia Hill-Force3, Peter W.H. Holland2, Chris T. Amemiya3, Jordi Garcia-Fernàndez1

1 Departament de Genètica, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal, 645. E-08028, Barcelona, Spain.
2 Department of Zoology, University of Oxford. South Parks Road, Oxford, OX1 3PS, U.K.
3 Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, Washington 98101, U.S.A.
4 Division of Developmental Biology. National Institute for Medical Research. The Ridgeway, Mill Hill. London NW7 1AA, U.K.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Minguillón C, Gardenyes J, Serra E, Castro LFC, Hill-Force A, Holland PWH, Amemiya CT, Garcia-Fernàndez J. No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 2005; 1:19-23. doi:10.7150/ijbs.1.19. Available from

File import instruction


The Hox gene cluster has been a key paradigm for a generation of developmental and evolutionary biologists. Since its discovery in the mid-1980's, the identification, genomic organization, expression, colinearity, and regulation of Hox genes have been immediate targets for study in any new model organism, and metazoan genome projects always refer to the structure of the particular Hox cluster(s). Since the early 1990's, it has been dogma that vertebrate Hox clusters are composed of thirteen paralogous groups. Nonetheless, we showed that in the otherwise prototypical cephalochordate amphioxus (Branchiostoma floridae), the Hox cluster contains a fourteenth Hox gene, and very recently, a 14th Hox paralogous group has been found in the coelacanth and the horn shark, suggesting that the amphioxus cluster was anticipating the finding of Hox 14 in some vertebrate lineages. In view of the pivotal place that amphioxus occupies in vertebrate evolution, we thought it of considerable interest to establish the limits of its Hox gene cluster, namely resolution of whether more Hox genes are present in the amphioxus cluster (e.g., Hox 15). Using two strategies, here we report the completion and characterization of the Hox gene content of the single amphioxus Hox cluster, which encompasses 650 kb from Hox1 to Evx. Our data have important implications for the primordial Hox gene cluster of chordates: the prototypical nature of the single amphioxus Hox cluster makes it unlikely that additional paralogous groups will be found in any chordate lineage. We suggest that 14 is the end.

Keywords: gene clusters, Evx, gene duplication, vertebrate evolution